Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
bioRxiv ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39386588

RESUMEN

A promising drug target, SETDB1, is a dual Kme reader and methyltransferase, which has been implicated in cancer and neurodegenerative disease progression. To help understand the role of the triple Tudor domain (3TD) of SETDB1, its Kme reader, we first identified a low micromolar small molecule ligand, UNC6535, which occupies simultaneously both the TD2 and TD3 reader binding sites. Further optimization led to the discovery of UNC10013, the first covalent 3TD ligand targeting Cys385 of SETDB1. UNC10013 is potent with a k inact /K I of 1.0 x 10 6 M -1 s -1 and demonstrated proteome-wide selectivity. In cells, negative allosteric modulation of SETDB1-mediated Akt methylation was observed after treatment with UNC10013. Therefore, UNC10013 is a potent, selective and cell-active covalent ligand for the 3TD of SETDB1, demonstrating negative allosteric modulator properties and making it a promising tool to study the biological role of SETDB1 in disease progression.

2.
Anal Chem ; 96(32): 13015-13024, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39074309

RESUMEN

Hydrogen-deuterium eXchange mass spectrometry (HDX-MS) is increasingly used in drug development to locate binding sites and to identify allosteric effects in drug/target interactions. However, the potential of this technique to quantitatively analyze drug candidate libraries remains largely unexplored. Here, a collection of 13 WDR5-targeting small molecules with surface plasmon resonance (SPR) dissociation coefficients (KD) ranging from 20 nM to ∼116 µM were characterized using differential HDX-MS (ΔHDX-MS). Conventional qualitative analysis of the ΔHDX-MS data set revealed the binding interfaces for all compounds and allosteric effects where present. We then demonstrated that ΔHDX-MS signal-to-noise (S/N) not only can rank library-relative affinity but also can accurately predict KD from a calibration curve constructed from high-quality SPR data. Three methods for S/N calculation are explored, each suitable for libraries with different characteristics. Our results demonstrate the potential for ΔHDX-MS use in drug candidate library affinity validation and/or determination while simultaneously characterizing structure.


Asunto(s)
Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Bibliotecas de Moléculas Pequeñas , Resonancia por Plasmón de Superficie , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Resonancia por Plasmón de Superficie/métodos , Humanos
3.
J Chem Inf Model ; 64(13): 5344-5355, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38916159

RESUMEN

We herewith applied a priori a generic hit identification method (POEM) for difficult targets of known three-dimensional structure, relying on the simple knowledge of physicochemical and topological properties of a user-selected cavity. Searching for local similarity to a set of fragment-bound protein microenvironments of known structure, a point cloud registration algorithm is first applied to align known subpockets to the target cavity. The resulting alignment then permits us to directly pose the corresponding seed fragments in a target cavity space not typically amenable to classical docking approaches. Last, linking potentially connectable atoms by a deep generative linker enables full ligand enumeration. When applied to the WD40 repeat (WDR) central cavity of leucine-rich repeat kinase 2 (LRRK2), an unprecedented binding site, POEM was able to quickly propose 94 potential hits, five of which were subsequently confirmed to bind in vitro to LRRK2-WDR.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Simulación del Acoplamiento Molecular , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Sitios de Unión , Dominios Proteicos , Humanos , Ligandos , Unión Proteica , Repeticiones WD40 , Algoritmos
4.
Biochemistry ; 63(10): 1297-1306, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38729622

RESUMEN

The DNA damage binding protein 1 (DDB1) is an essential component of protein complexes involved in DNA damage repair and the ubiquitin-proteasome system (UPS) for protein degradation. As an adaptor protein specific to Cullin-RING E3 ligases, DDB1 binds different receptors that poise protein substrates for ubiquitination and subsequent degradation by the 26S proteasome. Examples of DDB1-binding protein receptors are Cereblon (CRBN) and the WD-repeat containing DDB1- and CUL4-associated factors (DCAFs). Cognate substrates of CRBN and DCAFs are involved in cancer-related cellular processes or are mimicked by viruses to reprogram E3 ligases for the ubiquitination of antiviral host factors. Thus, disrupting interactions of DDB1 with receptor proteins might be an effective strategy for anticancer and antiviral drug discovery. Here, we developed fluorescence polarization (FP)-based peptide displacement assays that utilize full-length DDB1 and fluorescein isothiocyanate (FITC)-labeled peptide probes derived from the specific binding motifs of DDB1 interactors. A general FP-based assay condition applicable to diverse peptide probes was determined and optimized. Mutagenesis and biophysical analyses were then employed to identify the most suitable peptide probe. The FITC-DCAF15 L49A peptide binds DDB1 with a dissociation constant of 68 nM and can be displaced competitively by unlabeled peptides at sub-µM to low nM concentrations. These peptide displacement assays can be used to screen small molecule libraries to identify novel modulators that could specifically antagonize DDB1 interactions toward development of antiviral and cancer therapeutics.


Asunto(s)
Proteínas de Unión al ADN , Péptidos , Humanos , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Polarización de Fluorescencia/métodos , Péptidos/química , Péptidos/farmacología , Unión Proteica , Ubiquitina-Proteína Ligasas/metabolismo
5.
J Med Chem ; 66(23): 16051-16061, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37996079

RESUMEN

WD40 repeat-containing protein 91 (WDR91) regulates early-to-late endosome conversion and plays vital roles in endosome fusion, recycling, and transport. WDR91 was recently identified as a potential host factor for viral infection. We employed DNA-encoded chemical library (DEL) selection against the WDR domain of WDR91, followed by machine learning to predict ligands from the synthetically accessible Enamine REAL database. Screening of predicted compounds identified a WDR91 selective compound 1, with a KD of 6 ± 2 µM by surface plasmon resonance. The co-crystal structure confirmed the binding of 1 to the WDR91 side pocket, in proximity to cysteine 487, which led to the discovery of covalent analogues 18 and 19. The covalent adduct formation for 18 and 19 was confirmed by intact mass liquid chromatography-mass spectrometry. The discovery of 1, 18, and 19, accompanying structure-activity relationship, and the co-crystal structures provide valuable insights for designing potent and selective chemical tools against WDR91 to evaluate its therapeutic potential.


Asunto(s)
ADN , Bibliotecas de Moléculas Pequeñas , ADN/química , Biblioteca de Genes , Ligandos , Aprendizaje Automático , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química
6.
ACS Chem Biol ; 18(8): 1846-1853, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37556795

RESUMEN

Increased expression and hyperactivation of the methyltransferase SET domain bifurcated 1 (SETDB1) are commonly observed in cancer and central nervous system disorders. However, there are currently no reported SETDB1-specific methyltransferase inhibitors in the literature, suggesting that this is a challenging target. Here, we disclose that the previously reported small-molecule ligand for SETDB1's triple tudor domain, (R,R)-59, is unexpectedly able to increase SETDB1 methyltransferase activity both in vitro and in cells. Specifically, (R,R)-59 promotes in vitro SETDB1-mediated methylation of lysine 64 of the protein kinase Akt1. Treatment with (R,R)-59 also increased Akt1 threonine 308 phosphorylation and activation, a known consequence of Akt1 methylation, resulting in stimulated cell proliferation in a dose-dependent manner. (R,R)-59 is the first SETDB1 small-molecule positive activator for the methyltransferase activity of this protein. Mechanism of action studies show that full-length SETDB1 is required for significant in vitro methylation of an Akt1-K64 peptide and that this activity is stimulated by (R,R)-59 primarily through an increase in catalytic activity rather than a change in S-adenosyl methionine binding.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Dominios PR-SET , N-Metiltransferasa de Histona-Lisina/metabolismo , Ligandos , Metilación , Dominio Tudor
7.
J Med Chem ; 66(15): 10273-10288, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499118

RESUMEN

Histone deacetylase 6 (HDAC6) inhibition is an attractive strategy for treating numerous cancers, and HDAC6 catalytic inhibitors are currently in clinical trials. The HDAC6 zinc-finger ubiquitin-binding domain (UBD) binds free C-terminal diglycine motifs of unanchored ubiquitin polymer chains and protein aggregates, playing an important role in autophagy and aggresome assembly. However, targeting this domain with small molecule antagonists remains an underdeveloped avenue of HDAC6-focused drug discovery. We report SGC-UBD253 (25), a chemical probe potently targeting HDAC6-UBD in vitro with selectivity over nine other UBDs, except for weak USP16 binding. In cells, 25 is an effective antagonist of HDAC6-UBD at 1 µM, with marked proteome-wide selectivity. We identified SGC-UBD253N (32), a methylated derivative of 25 that is 300-fold less active, serving as a negative control. Together, 25 and 32 could enable further exploration of the biological function of the HDAC6-UBD and investigation of the therapeutic potential of targeting this domain.


Asunto(s)
Ubiquitina , Ubiquitinas , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/farmacología , Unión Proteica , Ubiquitina/metabolismo , Dedos de Zinc
8.
RSC Med Chem ; 14(6): 1002-1011, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37360399

RESUMEN

Target 2035, an international federation of biomedical scientists from the public and private sectors, is leveraging 'open' principles to develop a pharmacological tool for every human protein. These tools are important reagents for scientists studying human health and disease and will facilitate the development of new medicines. It is therefore not surprising that pharmaceutical companies are joining Target 2035, contributing both knowledge and reagents to study novel proteins. Here, we present a brief progress update on Target 2035 and highlight some of industry's contributions.

9.
J Chem Inf Model ; 63(13): 4070-4078, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37350740

RESUMEN

DCAF1 functions as a substrate recruitment subunit for the RING-type CRL4DCAF1 and the HECT family EDVPDCAF1 E3 ubiquitin ligases. The WDR domain of DCAF1 serves as a binding platform for substrate proteins and is also targeted by HIV and SIV lentiviral adaptors to induce the ubiquitination and proteasomal degradation of antiviral host factors. It is therefore attractive both as a potential therapeutic target for the development of chemical inhibitors and as an E3 ligase that could be recruited by novel PROTACs for targeted protein degradation. In this study, we used a proteome-scale drug-target interaction prediction model, MatchMaker, combined with cheminformatics filtering and docking to identify ligands for the DCAF1 WDR domain. Biophysical screening and X-ray crystallographic studies of the predicted binders confirmed a selective ligand occupying the central cavity of the WDR domain. This study shows that artificial intelligence-enabled virtual screening methods can successfully be applied in the absence of previously known ligands.


Asunto(s)
Inteligencia Artificial , Proteínas Portadoras , Ligandos , Proteínas Portadoras/química , Ubiquitina-Proteína Ligasas/metabolismo , Aprendizaje Automático
10.
bioRxiv ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37214894

RESUMEN

Increased expression and hyperactivation of the methyltransferase SETDB1 are commonly observed in cancer and central nervous system disorders. However, there are currently no reported SETDB1-specific methyltransferase inhibitors in the literature, suggesting this is a challenging target. Here, we disclose that the previously reported small-molecule ligand for SETDB1's Triple Tudor Domain, ( R,R )-59, is unexpectedly able to increase SETDB1 methyltransferase activity both in vitro and in cells. Specifically, ( R,R )-59 promotes in vitro SETDB1-mediated methylation of lysine 64 of the protein kinase Akt1. Treatment with ( R,R )-59 also increased Akt1 threonine 308 phosphorylation and activation, a known consequence of Akt1 methylation, resulting in stimulated cell proliferation in a dose-dependent manner. ( R,R )-59 is the first SETDB1 small-molecule positive activator for the methyltransferase activity of this protein. Mechanism of action studies show that full-length SETDB1 is required for significant in vitro methylation of an Akt1-K64 peptide, and that this activity is stimulated by ( R,R )-59 primarily through an increase in catalytic activity rather than a change in SAM binding.

11.
Nat Commun ; 14(1): 2052, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045836

RESUMEN

Fungal infections cause more than 1.5 million deaths a year. Due to emerging antifungal drug resistance, novel strategies are urgently needed to combat life-threatening fungal diseases. Here, we identify the host defense peptide mimetic, brilacidin (BRI) as a synergizer with caspofungin (CAS) against CAS-sensitive and CAS-resistant isolates of Aspergillus fumigatus, Candida albicans, C. auris, and CAS-intrinsically resistant Cryptococcus neoformans. BRI also potentiates azoles against A. fumigatus and several Mucorales fungi. BRI acts in A. fumigatus by affecting cell wall integrity pathway and cell membrane potential. BRI combined with CAS significantly clears A. fumigatus lung infection in an immunosuppressed murine model of invasive pulmonary aspergillosis. BRI alone also decreases A. fumigatus fungal burden and ablates disease development in a murine model of fungal keratitis. Our results indicate that combinations of BRI and antifungal drugs in clinical use are likely to improve the treatment outcome of aspergillosis and other fungal infections.


Asunto(s)
Aspergilosis , Micosis , Humanos , Ratones , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Caspofungina/farmacología , Caspofungina/uso terapéutico , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Modelos Animales de Enfermedad , Aspergilosis/microbiología , Micosis/tratamiento farmacológico , Aspergillus fumigatus , Candida albicans , Farmacorresistencia Fúngica
12.
J Med Chem ; 66(7): 5041-5060, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36948210

RESUMEN

DCAF1 is a substrate receptor of two distinct E3 ligases (CRL4DCAF1 and EDVP), plays a critical physiological role in protein degradation, and is considered a drug target for various cancers. Antagonists of DCAF1 could be used toward the development of therapeutics for cancers and viral treatments. We used the WDR domain of DCAF1 to screen a 114-billion-compound DNA encoded library (DEL) and identified candidate compounds using similarity search and machine learning. This led to the discovery of a compound (Z1391232269) with an SPR KD of 11 µM. Structure-guided hit optimization led to the discovery of OICR-8268 (26e) with an SPR KD of 38 nM and cellular target engagement with EC50 of 10 µM as measured by cellular thermal shift assay (CETSA). OICR-8268 is an excellent tool compound to enable the development of next-generation DCAF1 ligands toward cancer therapeutics, further investigation of DCAF1 functions in cells, and the development of DCAF1-based PROTACs.


Asunto(s)
Neoplasias , Ubiquitina-Proteína Ligasas , Humanos , Ligandos , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Portadoras/química
13.
Nat Rev Chem ; 6(4): 287-295, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35783295

RESUMEN

One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project to compare and improve small molecule hit-finding algorithms through cycles of prediction and experimental testing. Participants will predict small molecule binders for new and biologically relevant protein targets representing different prediction scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all predicted binders as well as all experimental screening data, including the chemical structures of experimentally tested compounds, will be made publicly available, and not subject to any intellectual property restrictions. The ability of a range of computational approaches to find novel binders will be evaluated, compared, and openly published. CACHE will launch 3 new benchmarking exercises every year. The outcomes will be better prediction methods, new small molecule binders for target proteins of importance for fundamental biology or drug discovery, and a major technological step towards achieving the goal of Target 2035, a global initiative to identify pharmacological probes for all human proteins.

14.
RSC Med Chem ; 13(1): 13-21, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35211674

RESUMEN

Twenty years after the publication of the first draft of the human genome, our knowledge of the human proteome is still fragmented. The challenge of translating the wealth of new knowledge from genomics into new medicines is that proteins, and not genes, are the primary executers of biological function. Therefore, much of how biology works in health and disease must be understood through the lens of protein function. Accordingly, a subset of human proteins has been at the heart of research interests of scientists over the centuries, and we have accumulated varying degrees of knowledge about approximately 65% of the human proteome. Nevertheless, a large proportion of proteins in the human proteome (∼35%) remains uncharacterized, and less than 5% of the human proteome has been successfully targeted for drug discovery. This highlights the profound disconnect between our abilities to obtain genetic information and subsequent development of effective medicines. Target 2035 is an international federation of biomedical scientists from the public and private sectors, which aims to address this gap by developing and applying new technologies to create by year 2035 chemogenomic libraries, chemical probes, and/or biological probes for the entire human proteome.

15.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34782742

RESUMEN

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Asunto(s)
Nucléolo Celular/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Sondas Moleculares/química , Dominios Proteicos , Proteínas Represoras/metabolismo , Metilación , Mieloma Múltiple/metabolismo , Nucleosomas/metabolismo
16.
Cell Rep Methods ; 1(2): 100011, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34235498

RESUMEN

We have developed a rapid, accurate, and cost-effective serologic test for SARS-CoV-2 virus, which caused the COVID-19 pandemic, on the basis of antibody-dependent agglutination of antigen-coated latex particles. When validated using plasma samples that are positive or negative for SARS-CoV-2, the agglutination assay detected antibodies against the receptor-binding domain of the spike (S-RBD) or the nucleocapsid protein of SARS-CoV-2 with 100% specificity and ∼98% sensitivity. Furthermore, we found that the strength of the S-RBD antibody response measured by the agglutination assay correlated with the efficiency of the plasma in blocking RBD binding to the angiotensin-converting enzyme 2 in a surrogate neutralization assay, suggesting that the agglutination assay might be used to identify individuals with virus-neutralizing antibodies. Intriguingly, we found that >92% of patients had detectable antibodies on the day of a positive viral RNA test, suggesting that the agglutination antibody test might complement RNA testing for the diagnosis of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Anticuerpos Antivirales , Aglutinación
17.
JCI Insight ; 6(13)2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34081630

RESUMEN

BACKGROUNDThe role of humoral immunity in COVID-19 is not fully understood, owing, in large part, to the complexity of antibodies produced in response to the SARS-CoV-2 infection. There is a pressing need for serology tests to assess patient-specific antibody response and predict clinical outcome.METHODSUsing SARS-CoV-2 proteome and peptide microarrays, we screened 146 COVID-19 patients' plasma samples to identify antigens and epitopes. This enabled us to develop a master epitope array and an epitope-specific agglutination assay to gauge antibody responses systematically and with high resolution.RESULTSWe identified linear epitopes from the spike (S) and nucleocapsid (N) proteins and showed that the epitopes enabled higher resolution antibody profiling than the S or N protein antigen. Specifically, we found that antibody responses to the S-811-825, S-881-895, and N-156-170 epitopes negatively or positively correlated with clinical severity or patient survival. Moreover, we found that the P681H and S235F mutations associated with the coronavirus variant of concern B.1.1.7 altered the specificity of the corresponding epitopes.CONCLUSIONEpitope-resolved antibody testing not only affords a high-resolution alternative to conventional immunoassays to delineate the complex humoral immunity to SARS-CoV-2 and differentiate between neutralizing and non-neutralizing antibodies, but it also may potentially be used to predict clinical outcome. The epitope peptides can be readily modified to detect antibodies against variants of concern in both the peptide array and latex agglutination formats.FUNDINGOntario Research Fund (ORF) COVID-19 Rapid Research Fund, Toronto COVID-19 Action Fund, Western University, Lawson Health Research Institute, London Health Sciences Foundation, and Academic Medical Organization of Southwestern Ontario (AMOSO) Innovation Fund.


Asunto(s)
Pruebas de Aglutinación/métodos , Formación de Anticuerpos/inmunología , Prueba Serológica para COVID-19/métodos , COVID-19/inmunología , Epítopos de Linfocito B/inmunología , SARS-CoV-2/inmunología , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos/inmunología , COVID-19/sangre , COVID-19/mortalidad , Epítopos/inmunología , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Humanos , Inmunidad Humoral , Análisis por Micromatrices/métodos , Nucleocápside/química , Nucleocápside/genética , Nucleocápside/inmunología , Péptidos/inmunología , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
19.
Nat Commun ; 11(1): 2396, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409666

RESUMEN

Protein arginine methyltransferases (PRMTs) regulate diverse biological processes and are increasingly being recognized for their potential as drug targets. Here we report the discovery of a potent, selective, and cell-active chemical probe for PRMT7. SGC3027 is a cell permeable prodrug, which in cells is converted to SGC8158, a potent, SAM-competitive PRMT7 inhibitor. Inhibition or knockout of cellular PRMT7 results in drastically reduced levels of arginine monomethylated HSP70 family stress-associated proteins. Structural and biochemical analyses reveal that PRMT7-driven in vitro methylation of HSP70 at R469 requires an ATP-bound, open conformation of HSP70. In cells, SGC3027 inhibits methylation of both constitutive and inducible forms of HSP70, and leads to decreased tolerance for perturbations of proteostasis including heat shock and proteasome inhibitors. These results demonstrate a role for PRMT7 and arginine methylation in stress response.


Asunto(s)
Arginina/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Estrés Fisiológico , Animales , Técnicas de Silenciamiento del Gen , Células HCT116 , Humanos , Metilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Células Sf9
20.
Nat Commun ; 10(1): 1915, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015424

RESUMEN

Bromodomains (BRDs) are conserved protein interaction modules which recognize (read) acetyl-lysine modifications, however their role(s) in regulating cellular states and their potential as targets for the development of targeted treatment strategies is poorly understood. Here we present a set of 25 chemical probes, selective small molecule inhibitors, covering 29 human bromodomain targets. We comprehensively evaluate the selectivity of this probe-set using BROMOscan and demonstrate the utility of the set identifying roles of BRDs in cellular processes and potential translational applications. For instance, we discovered crosstalk between histone acetylation and the glycolytic pathway resulting in a vulnerability of breast cancer cell lines under conditions of glucose deprivation or GLUT1 inhibition to inhibition of BRPF2/3 BRDs. This chemical probe-set will serve as a resource for future applications in the discovery of new physiological roles of bromodomain proteins in normal and disease states, and as a toolset for bromodomain target validation.


Asunto(s)
Antineoplásicos/farmacología , Células Epiteliales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Acetilación , Secuencia de Aminoácidos , Antineoplásicos/química , Línea Celular Tumoral , Epigénesis Genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Glucosa/deficiencia , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/genética , Ensayos Analíticos de Alto Rendimiento , Histona Acetiltransferasas , Chaperonas de Histonas , Histonas/genética , Histonas/metabolismo , Humanos , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...