Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38671744

RESUMEN

Reconstructive techniques to repair severe tissue defects include the use of autologous fasciocutaneous flaps, which may be limited due to donor site availability or lead to complications such as donor site morbidity. A number of synthetic or natural dermal substitutes are in use clinically, but none have the architectural complexity needed to reconstruct deep tissue defects. The perfusion decellularization of fasciocutaneous flaps is an emerging technique that yields a scaffold with the necessary composition and vascular microarchitecture and serves as an alternative to autologous flaps. In this study, we show the perfusion decellularization of porcine fasciocutaneous flaps using sodium dodecyl sulfate (SDS) at three different concentrations, and identify that 0.2% SDS results in a decellularized flap that is efficiently cleared of its cellular material at 86%, has maintained its collagen and glycosaminoglycan content, and preserved its microvasculature architecture. We further demonstrate that the decellularized graft has the porous structure and growth factors that would facilitate repopulation with cells. Finally, we show the biocompatibility of the decellularized flap using human dermal fibroblasts, with cells migrating as deep as 150 µm into the tissue over a 7-day culture period. Overall, our results demonstrate the promise of decellularized porcine flaps as an interesting alternative for reconstructing complex soft tissue defects, circumventing the limitations of autologous skin flaps.

2.
Adv Healthc Mater ; 13(13): e2302943, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38266310

RESUMEN

Decellularization of discarded whole livers and their recellularization with patient-specific induced pluripotent stem cells (iPSCs) to develop a functional organ is a promising approach to increasing the donor pool. The effect of extracellular matrix (ECM) of marginal livers on iPSC-hepatocyte differentiation and function has not been shown. To test the effect of donor liver ECM age and steatosis, young and old, as well as no, low, and high steatosis livers, are decellularized. All livers are decellularized successfully. High steatosis livers have fat remaining on the ECM after decellularization. Old donor liver ECM induces lower marker expression in early differentiation stages, compared to young liver ECM, while this difference is closed at later stages and do not affect iPSC-hepatocyte function significantly. High steatosis levels of liver ECM lead to higher albumin mRNA expression and secretion while at later stages of differentiation expression of major cytochrome (CYP) 450 enzymes is highest in low steatosis liver ECM. Both primary human hepatocytes and iPSC-hepatocytes show an increase in fat metabolism marker expression with increasing steatosis levels most likely induced by excess fat remaining on the ECM. Overall, removal of excess fat from liver ECM may be needed for inducing proper hepatic function after recellularization.


Asunto(s)
Diferenciación Celular , Matriz Extracelular , Hígado Graso , Hepatocitos , Células Madre Pluripotentes Inducidas , Hígado , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Hígado Graso/metabolismo , Hígado Graso/patología , Matriz Extracelular/metabolismo , Hepatocitos/metabolismo , Hepatocitos/citología , Hígado/metabolismo , Hígado/patología , Adulto , Donantes de Tejidos , Persona de Mediana Edad , Células Cultivadas , Factores de Edad , Andamios del Tejido/química
3.
Plast Reconstr Surg ; 151(4): 618e-629e, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36472499

RESUMEN

BACKGROUND: The standard in nipple reconstruction remains the autologous skin flap. Unfortunately, the results are not satisfying, with up to 75% loss of nipple projection over time. Existing studies investigated the use of primates as a source of implants. The authors hypothesized that the porcine nipple can serve as a perfect shape-supporting implant because of functional similarities to the human nipple. A decellularization protocol was developed to obtain an acellular nipple scaffold (ANS) for nipple reconstruction. METHODS: Tissue samples were collected from eight disease-free female Yorkshire pigs (60 to 70 kg) and then decellularized. The decellularization efficiency and extracellular matrix characterization was performed histologically and quantitatively (DNA, total collagen, elastin, and glycosaminoglycan content). In vitro and in vivo biocompatibility was determined by human dermal fibroblast culture and subcutaneous implantation of six ANSs in a single Yorkshire pig (60 to 70 kg), respectively. Inflammation and adverse events were monitored daily based on local clinical signs. RESULTS: The authors showed that all cellular structures and 96% of DNA [321.7 ± 57.6 ng DNA/mg wet tissue versus 11.7 ± 10.9 ng DNA/mg wet tissue, in native and ANS, respectively ( P < 0.001)] can be successfully removed. However, this was associated with a decrease in collagen [89.0 ± 11.4 and 58.8 ± 9.6 µg collagen/mg ( P < 0.001)] and elastin [14.2 ± 1.6 and 7.9 ± 2.4 µg elastin/mg ( P < 0.05)] and an increase in glycosaminoglycan content [5.0 ± 0.7 and 6.0 ± 0.8 ng/mg ( P < 0.05)]. ANS can support continuous cell growth in vitro and during preliminary biocompatibility tests in vivo. CONCLUSION: This is a preliminary report of a novel promising ANS for nipple reconstruction, but more research is needed to validate results. CLINICAL RELEVANCE STATEMENT: Breast cancer is very common among women. Treatment involves mastectomy, but its consequences affect patient mental well-being, and can lead to depression. Nipple-areola complex reconstruction is critical, and existing methods lead to unsatisfactory outcomes.


Asunto(s)
Neoplasias de la Mama , Mamoplastia , Femenino , Humanos , Porcinos , Animales , Mastectomía/métodos , Pezones/cirugía , Pezones/patología , Neoplasias de la Mama/cirugía , Elastina , Mamoplastia/métodos , Colágeno , ADN , Glicosaminoglicanos , Estudios Retrospectivos
4.
Bioengineering (Basel) ; 9(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35621497

RESUMEN

End-stage liver diseases lead to mortality of millions of patients, as the only treatment available is liver transplantation and donor scarcity means that patients have to wait long periods before receiving a new liver. In order to minimize donor organ scarcity, a promising bioengineering approach is to decellularize livers that do not qualify for transplantation. Through decellularization, these organs can be used as scaffolds for developing new functional organs. In this process, the original cells of the organ are removed and ideally should be replaced by patient-specific cells to eliminate the risk of immune rejection. Induced pluripotent stem cells (iPSCs) are ideal candidates for developing patient-specific organs, yet the maturity and functionality of iPSC-derived cells do not match those of primary cells. In this study, we introduced iPSCs into decellularized rat liver scaffolds prior to the start of differentiation into hepatic lineages to maximize the exposure of iPSCs to native liver matrices. Through exposure to the unique composition and native 3D organization of the liver microenvironment, as well as the more efficient perfusion culture throughout the differentiation process, iPSC differentiation into hepatocyte-like cells was enhanced. The resulting cells showed significantly higher expression of mature hepatocyte markers, including important CYP450 enzymes, along with lower expression of fetal markers, such as AFP. Importantly, the gene expression profile throughout the different stages of differentiation was more similar to native development. Our study shows that the native 3D liver microenvironment has a pivotal role to play in the development of human-origin hepatocyte-like cells with more mature characteristics.

5.
J Vis Exp ; (181)2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35435906

RESUMEN

Vascularized Composite Allografts (VCA) such as hand, face, or penile transplant represents the cutting-edge treatment for devastating skin defects, failed by the first steps of the reconstructive ladder. Despite promising aesthetic and functional outcomes, the main limiting factor remains the need for a drastically applied lifelong immunosuppression and its well-known medical risks, preventing broader indications. Therefore, lifting the immune barrier in VCA is essential to tip the ethical scale and improve patients' quality of life using the most advanced surgical techniques. De novo creation of a patient-specific graft is the upcoming breakthrough in reconstructive transplantation. Using tissue engineering techniques, VCAs can be freed of donor cells and customized for the recipient through perfusion-decellularization-recellularization. To develop these new technologies, a large-scale animal VCA model is necessary. Hence, swine fascio-cutaneous flaps, composed of skin, fat, fascia, and vessels, represent an ideal model for preliminary studies in VCA. Nevertheless, most VCA models described in the literature include muscle and bone. This work reports a reliable and reproducible technique for saphenous fascio-cutaneous flap harvest in swine, a practical tool for various research fields, especially vascularized composite tissue engineering.


Asunto(s)
Aloinjertos Compuestos , Aloinjertos , Animales , Bioingeniería , Aloinjertos Compuestos/trasplante , Rechazo de Injerto , Supervivencia de Injerto , Humanos , Calidad de Vida , Porcinos
6.
Adv Healthc Mater ; 11(13): e2102795, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35373501

RESUMEN

Elastin-like peptides (ELPs) are a versatile platform for tissue engineering and drug delivery. Here, micelle forming ELP chains are genetically fused to three therapeutic molecules, keratinocyte growth factor (KGF), stromal cell-derived growth factor 1 (SDF1), and cathelicidin (LL37), to be used in wound healing. Chronic wounds represent a growing problem worldwide. A combinatorial therapy approach targeting different aspects of wound healing would be beneficial, providing a controlled and sustained release of active molecules, while simultaneously protecting these therapeutics from the surrounding harsh wound environment. The results of this study demonstrate that the conjugation of the growth factors KGF and SDF1 and the antimicrobial peptide LL37 to ELPs does not affect the micelle structure and that all three therapeutic moieties retain their bioactivity in vitro. Importantly, when the combination of these micelle ELP nanoparticles are applied to wounds in diabetic mice, over 90 % wound closure is observed, which is significantly higher than when the therapeutics are applied in their naked forms. The application of the nanoparticles designed here is the first report of targeting different aspect of wound healing synergistically.


Asunto(s)
Diabetes Mellitus Experimental , Nanopartículas , Animales , Elastina/química , Elastina/metabolismo , Ratones , Micelas , Nanopartículas/química , Ingeniería de Tejidos , Cicatrización de Heridas
7.
Tissue Eng Part B Rev ; 28(3): 677-693, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34238047

RESUMEN

Vascularized composite allotransplantation (VCA) refers to the transplantation of multiple tissues as a functional unit from a deceased donor to a recipient with a severe injury. These grafts serve as potential replacements for traumatic tissue losses. The main problems are the consequences of the long immunosuppressive drugs and the lack of compatible donor. To avoid these limitations, decellularization/recellularization constitutes an attractive approach. The aim of decellularization/recellularization technology is to develop immunogenic free biological substitutes that will restore, maintain, or improve tissue and organ's function. A PubMed search was performed for articles on decellularization and recellularization of composite tissue allografts between February and March 2021, with no restrictions in publication year. The selected reports were evaluated in terms of decellularization protocols, assessment of decellularized grafts, and evaluation of their biocompatibility and repopulation with cells both in vitro and in vivo. The search resulted in a total of 88 articles. Each article was reviewed, 77 were excluded, and the remaining 11 articles reported decellularization of 12 different vascular composite allografts in humans (4), large animals (3), and small animals (rodents; 5). The decellularization protocol for VCA varies slightly between studies, but majority of the reports employ 1% sodium dodecyl sulfate as the main reagent for decellularization. The immunological response of the decellularized scaffolds remain poorly evaluated. Few authors have been able to attempt the recellularization and transplantation of these scaffolds. Successful transplantation seems to require prior recellularization. Decellularization/recellularization is a promising, growing, and emerging developing research field in vascular composite allotransplantation. Impact statement Tissue engineering for vascular composite allotransplantation using decellularization and recellularization approach is a fast-growing area of interest in the reconstructive surgery field. This review will be a very useful tool to get a clear overview for researchers interested in this field.


Asunto(s)
Aloinjertos Compuestos , Andamios del Tejido , Animales , Matriz Extracelular , Humanos , Donantes de Tejidos , Ingeniería de Tejidos/métodos
8.
Biomaterials ; 270: 120689, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33524812

RESUMEN

The only treatment available for end stage liver diseases is orthotopic liver transplantation. Although there is a big donor scarcity, many donor livers are discarded as they do not qualify for transplantation. Alternatively, decellularization of discarded livers can potentially render them transplantable upon recellularization and functional testing. The success of this approach will heavily depend on the quality of decellularized scaffolds which might show variability due to factors including age. Here we assessed the age-dependent differences in liver extracellular matrix (ECM) using rat and human livers. We show that the liver matrix has higher collagen and glycosaminoglycan content and a lower growth factor content with age. Importantly, these changes lead to deterioration in primary hepatocyte function potentially due to ECM stiffening and integrin-dependent signal transduction. Overall, we show that ECM changes with age and these changes significantly affect cell function thus donor age should be considered as an important factor for bioengineering liver substitutes.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Animales , Matriz Extracelular , Hepatocitos , Hígado , Ratas
9.
Biotechnol Bioeng ; 117(5): 1575-1583, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31956985

RESUMEN

Tissue engineering scaffolds are intended to provide mechanical and biological support for cells to migrate, engraft and ultimately regenerate the tissue. Development of scaffolds with sustained delivery of growth factors and chemokines would enhance the therapeutic benefits, especially in wound healing. In this study, we incorporated our previously designed therapeutic particles, composed of fusion of elastin-like peptides (ELPs) as the drug delivery platform to keratinocyte growth factor (KGF), into a tissue scaffold, alloderm. The results demonstrated that sustained KGF-ELP release was achieved and the bioactivity of the released therapeutic particles was shown via cell proliferation assay, as well as a mouse pouch model in vivo, where higher cellular infiltration and vascularization were observed in scaffolds functionalized with KGF-ELPs.


Asunto(s)
Biopolímeros/química , Colágeno/química , Elastina/química , Andamios del Tejido/química , Animales , Biopolímeros/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colágeno/farmacología , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Humanos , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Ingeniería de Tejidos
10.
Curr Transplant Rep ; 6(2): 119-126, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31289714

RESUMEN

PURPOSE OF REVIEW: In this review, we discuss the recent advancements in liver bioengineering and cell therapy and future advancements to improve the field towards clinical applications. RECENT FINDINGS: 3D printing, hydrogel-based tissue fabrication, and the use of native decellularized liver extracellular matrix as a scaffold are used to develop whole or partial liver substitutes. The current focus is on developing a functional liver graft through achieving a non-leaky endothelium and a fully constructed bile duct. Use of cell therapy as a treatment is less invasive and less costly compared to transplantation, however, lack of readily available cell sources with low or no immunogenicity and contradicting outcomes of clinical trials are yet to be overcome. SUMMARY: Liver bioengineering is advancing rapidly through the development of in vitro and in vivo tissue and organ models. Although there are major challenges to overcome, through optimization of the current methods and successful integration of induced pluripotent stem cells, the development of readily available, patient-specific liver substitutes can be achieved.

11.
Acta Biomater ; 94: 372-391, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31146032

RESUMEN

Deaths attributed to ischemic heart disease increased by 41.7% from 1990 to 2013. This is primarily due to an increase in the aged population, however, research on cardiovascular disease (CVD) has been overlooking aging, a well-documented contributor to CVD. The use of young animals is heavily preferred due to lower costs and ready availability, despite the prominent differences between young and aged heart structure and function. Here we present the first human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (iCM)-based, in vitro aged myocardial tissue model as an alternative research platform. Within 4 months, iCMs go through accelerated senescence and show cellular characteristics of aging. Furthermore, the model tissues fabricated using aged iCMs, with stiffness resembling that of aged human heart, show functional and pharmacological deterioration specific to aged myocardium. Our novel tissue model with age-appropriate physiology and pathology presents a promising new platform for investigating CVD or other age-related diseases. STATEMENT OF SIGNIFICANCE: In vitro and in vivo models of cardiovascular disease are aimed to provide crucial insight on the pathology and treatment of these diseases. However, the contribution of age-dependent cardiovascular changes is greatly underestimated through the use of young animals and premature cardiomyocytes. Here, we developed in vitro aged cardiac tissue models that mimic the aged heart tissue microenvironment and cellular phenotype and present the first evidence that age-appropriate in vitro disease models can be developed to gain more physiologically-relevant insight on development, progression, and amelioration of cardiovascular diseases.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Cardiovasculares , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Adulto , Anciano , Envejecimiento/patología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Persona de Mediana Edad , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/patología
12.
Tissue Eng Part A ; 25(9-10): 759-772, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30704346

RESUMEN

IMPACT STATEMENT: Modeling human disease as precisely as possible is of upmost importance in understanding the underlying pathology and discovering effective therapies. Therefore, disease models that are highly controlled and composed of human-origin cells that present the disease phenotype are crucial. The human induced pluripotent stem cell (hiPSC)-based tissue model we present in this study is an important example of human-origin tissue model with controlled gene expression. Through CRISPR/Cas9 editing of hypoxia inducible factor 1α in hiPSCs, we developed tissue models that show the age and disease-dependent endothelial deterioration. This model holds promise for various biomedical applications as more realistic disease phenotypes can be created using fully human-origin platforms.


Asunto(s)
Envejecimiento/metabolismo , Sistemas CRISPR-Cas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Cardiovasculares , Envejecimiento/genética , Envejecimiento/patología , Hipoxia de la Célula , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
13.
R Soc Open Sci ; 5(2): 171395, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29515857

RESUMEN

The mortality rate of many complex multicellular organisms increases with age, which suggests that net ageing damage is accumulative, despite remodelling processes. But how exactly do these little mishaps in the cellular level accumulate and spread to become a systemic catastrophe? To address this question we present experiments with synthetic tissues, an analytical model consistent with experiments, and a number of implications that follow the analytical model. Our theoretical framework describes how shape, curvature and density influences the propagation of failure in a tissue subjected to oxidative damage. We propose that ageing is an emergent property governed by interaction between cells, and that intercellular processes play a role that is at least as important as intracellular ones.

14.
Biotechnol Bioeng ; 115(7): 1717-1728, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29578573

RESUMEN

With recent advances in biotechnology, mammalian cells are used in biopharmaceutical industries to produce valuable protein therapeutics and investigated as effective therapeutic agents to permanently degenerative diseases in cell based therapy. In these exciting and actively expanding fields, a reliable, efficient, and affordable platform to culture mammalian cells on a large scale is one of the most vital necessities. To produce and maintain a very large population of anchorage-dependent cells, a microcarrier-based stirred tank bioreactor is commonly used. In this approach, the cells are exposed to harmful hydrodynamic shear stress in the bioreactor and the mass transfer rates of nutrients and gases in the bioreactor are often kept below an optimal level to prevent cellular damages from the shear stress. In this paper, a hollow microcarrier (HMC) is presented as a novel solution to protect cells from shear stress in stirred bioreactors, while ensuring sufficient and uniform mass transfer rate of gases and nutrients. HMC is a hollow microsphere and cells are cultured on its inner surface to be protected, while openings on the HMC provide sufficient exchange of media inside the HMC. As a proof of concept, we demonstrated the expansion of fibroblasts, NIH/3T3 and the expansion and cardiac differentiation of human induced pluripotent stem cells, along with detailed numerical analysis. We believe that the developed HMC can be a practical solution to enable large-scale expansion of shear-sensitive anchorage-dependent cells in an industrial scale with stirred bioreactors.


Asunto(s)
Reactores Biológicos , Adhesión Celular , Técnicas de Cultivo de Célula/métodos , Células Inmovilizadas/fisiología , Microesferas , Animales , Biotecnología/métodos , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Ratones , Células 3T3 NIH/fisiología , Tecnología Farmacéutica/métodos
15.
Acta Biomater ; 58: 337-348, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28648749

RESUMEN

Myocardial infarction (MI) is one of the most common among cardiovascular diseases. Endothelial cells (ECs) are considered to have protective effects on cardiomyocytes (CMs) under stress conditions such as MI; however, the paracrine CM-EC crosstalk and the resulting endogenous cellular responses that could contribute to this protective effect are not thoroughly investigated. Here we created biomimetic synthetic tissues containing CMs and human induced pluripotent stem cell (hiPSC)-derived ECs (iECs), which showed improved cell survival compared to single cultures under conditions mimicking the aftermath of MI, and performed high-throughput RNA-sequencing to identify target pathways that could govern CM-iEC crosstalk and the resulting improvement in cell viability. Our results showed that single cultured CMs had different gene expression profiles compared to CMs co-cultured with iECs. More importantly, this gene expression profile was preserved in response to oxidative stress in co-cultured CMs while single cultured CMs showed a significantly different gene expression pattern under stress, suggesting a stabilizing effect of iECs on CMs under oxidative stress conditions. Furthermore, we have validated the in vivo relevance of our engineered model tissues by comparing the changes in the expression levels of several key genes of the encapsulated CMs and iECs with in vivo rat MI model data and clinical data, respectively. We conclude that iECs have protective effects on CMs under oxidative stress through stabilizing mitochondrial complexes, suppressing oxidative phosphorylation pathway and activating pathways such as the drug metabolism-cytochrome P450 pathway, Rap1 signaling pathway, and adrenergic signaling in cardiomyocytes pathway. STATEMENT OF SIGNIFICANCE: Heart diseases are the leading cause of death worldwide. Oxidative stress is a common unwanted outcome that especially occurs due to the reperfusion following heart attack or heart surgery. Standard methods of in vivo analysis do not allow dissecting various intermingled parameters, while regular 2D cell culture approaches often fail to provide a biomimetic environment for the physiologically relevant cellular phenotypes. In this research, a systematic genome-wide transcriptome profiling was performed on myocardial cells in a biomimetic 3D hydrogel-based synthetic model tissue, for identifying possible target genes and pathways as protecting regulators against oxidative stress. Identification of such pathways would be very valuable for new strategies during heart disease treatment by reducing the cellular damage due to reperfusion injury.


Asunto(s)
Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hidrogeles/química , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Animales , Técnicas de Cocultivo , Células Endoteliales/citología , Miocitos Cardíacos/citología , Ratas , Ratas Sprague-Dawley
16.
Acta Biomater ; 58: 323-336, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28629892

RESUMEN

Studying heart tissue is critical for understanding and developing treatments for cardiovascular diseases. In this work, we fabricated precisely controlled and biomimetic engineered model tissues to study how cell-cell and cell-matrix interactions influence myocardial cell survival upon exposure to pathological level oxidative stress. Specifically, the interactions of endothelial cells (ECs) and cardiomyocytes (CMs), and the role of hypoxia inducible factor-1α (HIF-1α), with its novel alternative regulator, HIF-1α antisense RNA1 (HIF1A-AS1), in these interactions were investigated. We encapsulated CMs in photo-crosslinkable, biomimetic hydrogels with or without ECs, then exposed to oxidative stress followed by normoxia. With precisely controlled microenvironment provided by the model tissues, cell-cell interactions were restricted to be solely through the secreted factors. CM survival after oxidative stress was significantly improved, in the presence of ECs, when cells were in the model tissues that were functionalized with cell attachment motifs. Importantly, the cardioprotective effect of ECs was reduced when HIF-1α expression was knocked down suggesting that HIF-1α is involved in cardioprotection from oxidative damage, provided through secreted factors conferred by the ECs. Using model tissues, we showed that cell survival increased with increased cell-cell communication and enhanced cell-matrix interactions. In addition, whole genome transcriptome analysis showed, for the first time to our knowledge, a possible role for HIF1A-AS1 in oxidative regulation of HIF-1α. We showed that although HIF1A-AS1 knockdown helps CM survival, its effect is overridden by CM-EC bidirectional interactions as we showed that the conditioned media taken from the CM-EC co-cultures improved CM survival, regardless of HIF1A-AS1 expression. STATEMENT OF SIGNIFICANCE: Cardiovascular diseases, most of which are associated with oxidative stress, is the most common cause of death worldwide. Thus, understanding the molecular events as well as the role of intercellular communication under oxidative stress is upmost importance in its prevention. In this study we used 3D engineered tissue models to investigate the role of HIF-1α and its regulation in EC-mediated cardioprotection. We showed that EC-mediated protection is only possible when there is a bidirectional crosstalk between ECs and CMs even without physical cell-cell contact. In addition, this protective effect is at least partially related to cell-ECM interactions and HIF-1α, which is regulated by HIF1A-AS1 under oxidative stress.


Asunto(s)
Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Modelos Cardiovasculares , Miocardio/metabolismo , Estrés Oxidativo , Comunicación Paracrina , ARN Largo no Codificante/metabolismo , Transducción de Señal , Animales , Línea Celular , Células Endoteliales/citología , Hidrogeles/química , Miocardio/citología , Ratas , Ratas Sprague-Dawley
17.
Biomicrofluidics ; 11(2): 024105, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28396709

RESUMEN

The heart wall tissue, or the myocardium, is one of the main targets in cardiovascular disease prevention and treatment. Animal models have not been sufficient in mimicking the human myocardium as evident by the very low clinical translation rates of cardiovascular drugs. Additionally, current in vitro models of the human myocardium possess several shortcomings such as lack of physiologically relevant co-culture of myocardial cells, lack of a 3D biomimetic environment, and the use of non-human cells. In this study, we address these shortcomings through the design and manufacture of a myocardium-on-chip (MOC) using 3D cell-laden hydrogel constructs and human induced pluripotent stem cell (hiPSC) derived myocardial cells. The MOC utilizes 3D spatially controlled co-culture of hiPSC derived cardiomyocytes (iCMs) and hiPSC derived endothelial cells (iECs) integrated among iCMs as well as in capillary-like side channels, to better mimic the microvasculature seen in native myocardium. We first fully characterized iCMs using immunostaining, genetic, and electrochemical analysis and iECs through immunostaining and alignment analysis to ensure their functionality, and then seeded these cells sequentially into the MOC device. We showed that iECs could be cultured within the microfluidic device without losing their phenotypic lineage commitment, and align with the flow upon physiological level shear stresses. We were able to incorporate iCMs within the device in a spatially controlled manner with the help of photocrosslinkable polymers. The iCMs were shown to be viable and functional within the device up to 7 days, and were integrated with the iECs. The iCMs and iECs in this study were derived from the same hiPSC cell line, essentially mimicking the myocardium of an individual human patient. Such devices are essential for personalized medicine studies where the individual drug response of patients with different genetic backgrounds can be tested in a physiologically relevant manner.

18.
Biomed Mater ; 12(2): 025009, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28143999

RESUMEN

The tumor microenvironment (TME) is distinctly heterogeneous and is involved in tumor growth, metastasis, and drug resistance. Mimicking this diverse microenvironment is essential for understanding tumor growth and metastasis. Despite the substantial scientific progress made with traditional cell culture methods, microfabricated three-dimensional (3D) cell cultures that can be precisely controlled to mimic the changes occur in the TME over tumor progression are necessary for simulating organ-specific TME in vitro. In this research, to simulate the breast cancer TME, microwell arrays of defined geometry and dimensions were fabricated using photo-reactive hydrogels for a cancer cell line and primary explant tissue culture. Microwell arrays fabricated from 4-arm polyethylene glycol acrylate and methacrylated gelatin with different degrees of methacrylation for controlled cell-matrix interactions and tunable stiffness were used to create a platform for studying the effects of distinct hydrogel compositions and stiffness on tumor formation. Using these microwell arrays, size-controlled spheroids of human breast cancer cell line HCC1806 were formed and the cell attachment properties, viability, metabolic activity, and migration levels of these spheroids were examined. In addition, primary mammary organoid tissues explanted from mice were successfully cultured in these hydrogel-based microwell arrays and the organoid morphology and viability, as well as organoid branching were studied. The microwell array platform developed and characterized in this study could be useful for generating a tissue-specific TME for in vitro high throughput studies of breast cancer development and progression as well as in drug screening studies for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/patología , Microambiente Tumoral , Animales , Materiales Biocompatibles , Neoplasias de la Mama/fisiopatología , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Femenino , Gelatina , Ensayos Analíticos de Alto Rendimiento , Humanos , Hidrogeles , Glándulas Mamarias Animales/anatomía & histología , Ensayo de Materiales , Ratones , Polietilenglicoles , Esferoides Celulares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...