Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Alzheimers Res Ther ; 16(1): 236, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39449097

RESUMEN

BACKGROUND: Biomarkers of Alzheimer's disease (AD) and mild cognitive impairment (MCI, or prodromal AD) are highly significant for early diagnosis, clinical trials and treatment outcome evaluations. Electroencephalography (EEG), being noninvasive and easily accessible, has recently been the center of focus. However, a comprehensive understanding of EEG in dementia is still needed. A primary objective of this study is to investigate which of the many EEG characteristics could effectively differentiate between individuals with AD or prodromal AD and healthy individuals. METHODS: We collected resting state EEG data from individuals with AD, prodromal AD, and normal cognition. Two distinct preprocessing pipelines were employed to study the reliability of the extracted measures across different datasets. We extracted 41 different EEG features. We have also developed a stand-alone software application package, Feature Analyzer, as a comprehensive toolbox for EEG analysis. This tool allows users to extract 41 EEG features spanning various domains, including complexity measures, wavelet features, spectral power ratios, and entropy measures. We performed statistical tests to investigate the differences in AD or prodromal AD from age-matched cognitively normal individuals based on the extracted EEG features, power spectral density (PSD), and EEG functional connectivity. RESULTS: Spectral power ratio measures such as theta/alpha and theta/beta power ratios showed significant differences between cognitively normal and AD individuals. Theta power was higher in AD, suggesting a slowing of oscillations in AD; however, the functional connectivity of the theta band was decreased in AD individuals. In contrast, we observed increased gamma/alpha power ratio, gamma power, and gamma functional connectivity in prodromal AD. Entropy and complexity measures after correcting for multiple electrode comparisons did not show differences in AD or prodromal AD groups. We thus catalogued AD and prodromal AD-specific EEG features. CONCLUSIONS: Our findings reveal that the changes in power and connectivity in certain frequency bands of EEG differ in prodromal AD and AD. The spectral power, power ratios, and the functional connectivity of theta and gamma could be biomarkers for diagnosis of AD and prodromal AD, measure the treatment outcome, and possibly a target for brain stimulation.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Disfunción Cognitiva , Electroencefalografía , Síntomas Prodrómicos , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/fisiopatología , Electroencefalografía/métodos , Femenino , Masculino , Anciano , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/fisiopatología , Encéfalo/fisiopatología , Anciano de 80 o más Años , Persona de Mediana Edad
2.
Nat Commun ; 15(1): 2190, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467602

RESUMEN

The precise temporal coordination of neural activity is crucial for brain function. In the hippocampus, this precision is reflected in the oscillatory rhythms observed in CA1. While it is known that a balance between excitatory and inhibitory activity is necessary to generate and maintain these oscillations, the differential contribution of feedforward and feedback inhibition remains ambiguous. Here we use conditional genetics to chronically silence CA1 pyramidal cell transmission, ablating the ability of these neurons to recruit feedback inhibition in the local circuit, while recording physiological activity in mice. We find that this intervention leads to local pathophysiological events, with ripple amplitude and intrinsic frequency becoming significantly larger and spatially triggered local population spikes locked to the trough of the theta oscillation appearing during movement. These phenotypes demonstrate that feedback inhibition is crucial in maintaining local sparsity of activation and reveal the key role of lateral inhibition in CA1 in shaping circuit function.


Asunto(s)
Hipocampo , Células Piramidales , Ratones , Animales , Retroalimentación , Hipocampo/fisiología , Células Piramidales/fisiología , Neuronas , Región CA1 Hipocampal/fisiología , Interneuronas/fisiología , Potenciales de Acción/fisiología
3.
Neuron ; 110(19): 3091-3105.e9, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35987206

RESUMEN

A major pathological hallmark of neurodegenerative diseases, including Alzheimer's, is a significant reduction in the white matter connecting the two cerebral hemispheres, as well as in the correlated activity between anatomically corresponding bilateral brain areas. However, the underlying circuit mechanisms and the cognitive relevance of cross-hemispheric (CH) communication remain poorly understood. Here, we show that novelty discrimination behavior activates CH neurons and enhances homotopic synchronized neural oscillations in the visual cortex. CH neurons provide excitatory drive required for synchronous neural oscillations between hemispheres, and unilateral inhibition of the CH circuit is sufficient to impair synchronous oscillations and novelty discrimination behavior. In the 5XFAD and Tau P301S mouse models, CH communication is altered, and novelty discrimination is impaired. These data reveal a hitherto uncharacterized CH circuit in the visual cortex, establishing a causal link between this circuit and novelty discrimination behavior and highlighting its impairment in mouse models of neurodegeneration.


Asunto(s)
Hipocampo , Corteza Visual , Animales , Modelos Animales de Enfermedad , Hipocampo/fisiología , Interneuronas/fisiología , Ratones , Neuronas/fisiología
4.
Nat Neurosci ; 23(12): 1606-1617, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33020654

RESUMEN

The epigenome and three-dimensional (3D) genomic architecture are emerging as key factors in the dynamic regulation of different transcriptional programs required for neuronal functions. In this study, we used an activity-dependent tagging system in mice to determine the epigenetic state, 3D genome architecture and transcriptional landscape of engram cells over the lifespan of memory formation and recall. Our findings reveal that memory encoding leads to an epigenetic priming event, marked by increased accessibility of enhancers without the corresponding transcriptional changes. Memory consolidation subsequently results in spatial reorganization of large chromatin segments and promoter-enhancer interactions. Finally, with reactivation, engram neurons use a subset of de novo long-range interactions, where primed enhancers are brought in contact with their respective promoters to upregulate genes involved in local protein translation in synaptic compartments. Collectively, our work elucidates the comprehensive transcriptional and epigenomic landscape across the lifespan of memory formation and recall in the hippocampal engram ensemble.


Asunto(s)
Epigenómica , Hipocampo/fisiología , Memoria/fisiología , Recuerdo Mental/fisiología , Transcriptoma , Animales , Mapeo Encefálico , Consolidación de la Memoria/fisiología , Ratones , Ratones Transgénicos , Neuronas/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Regulación hacia Arriba/fisiología
5.
Nat Commun ; 11(1): 2484, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424276

RESUMEN

DNA damage contributes to brain aging and neurodegenerative diseases. However, the factors stimulating DNA repair to stave off functional decline remain obscure. We show that HDAC1 modulates OGG1-initated 8-oxoguanine (8-oxoG) repair in the brain. HDAC1-deficient mice display age-associated DNA damage accumulation and cognitive impairment. HDAC1 stimulates OGG1, a DNA glycosylase known to remove 8-oxoG lesions that are associated with transcriptional repression. HDAC1 deficiency causes impaired OGG1 activity, 8-oxoG accumulation at the promoters of genes critical for brain function, and transcriptional repression. Moreover, we observe elevated 8-oxoG along with reduced HDAC1 activity and downregulation of a similar gene set in the 5XFAD mouse model of Alzheimer's disease. Notably, pharmacological activation of HDAC1 alleviates the deleterious effects of 8-oxoG in aged wild-type and 5XFAD mice. Our work uncovers important roles for HDAC1 in 8-oxoG repair and highlights the therapeutic potential of HDAC1 activation to counter functional decline in brain aging and neurodegeneration.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Encéfalo/patología , Daño del ADN , ADN Glicosilasas/metabolismo , Histona Desacetilasa 1/metabolismo , Estrés Oxidativo , Acetilación , Envejecimiento/genética , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/fisiopatología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Secuencia de Bases , Benzofenonas/farmacología , Cognición/efectos de los fármacos , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/patología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Ontología de Genes , Guanina/análogos & derivados , Guanina/metabolismo , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Regiones Promotoras Genéticas/genética
6.
Trends Neurosci ; 43(1): 24-41, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31836315

RESUMEN

Studies have shown that gamma oscillations (30-100 Hz) are relevant for neurocircuit function, behavior, and memory. To examine a possible causal contribution of gamma oscillations to cognitive function, recent studies have employed various types of brain stimulation to induce gamma oscillations. Techniques such as optogenetics or sensory stimulation appear to engage canonical neurocircuits that encompass excitatory and inhibitory interneurons, similarly to those driven by sensory experience, to induce gamma entrainment. Sensory evoked gamma entrainment improves cognitive function in mouse models. Oscillations have traditionally been studied at the neurophysiological level; however, sensory evoked gamma entrainment is able to induce gene expression changes in multiple cell types including neurons and microglia. Furthermore, evidence suggests that chronic gamma entrainment offers neuroprotective effects.


Asunto(s)
Cognición , Ritmo Gamma , Microglía , Neuronas , Animales , Cognición/fisiología , Estimulación Encefálica Profunda , Interneuronas/fisiología , Ratones , Microglía/fisiología , Neuronas/fisiología , Optogenética
7.
Neuron ; 102(5): 929-943.e8, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31076275

RESUMEN

Neuronal and synaptic loss is characteristic in many neurodegenerative diseases, such as frontotemporal dementia and Alzheimer's disease. Recently, we showed that inducing gamma oscillations with visual stimulation (gamma entrainment using sensory stimuli, or GENUS) reduced amyloid plaques and phosphorylated tau in multiple mouse models. Whether GENUS can affect neurodegeneration or cognitive performance remains unknown. Here, we demonstrate that GENUS can entrain gamma oscillations in the visual cortex, hippocampus, and prefrontal cortex in Tau P301S and CK-p25 mouse models of neurodegeneration. Tau P301S and CK-p25 mice subjected to chronic, daily GENUS from the early stages of neurodegeneration showed a preservation of neuronal and synaptic density across multiple brain areas and modified cognitive performance. Our transcriptomic and phosphoproteomic data suggest that chronic GENUS shifts neurons to a less degenerative state, improving synaptic function, enhancing neuroprotective factors, and reducing DNA damage in neurons while also reducing inflammatory response in microglia.


Asunto(s)
Ritmo Gamma/fisiología , Hipocampo/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/patología , Neuroprotección/fisiología , Estimulación Luminosa/métodos , Corteza Prefrontal/fisiopatología , Corteza Visual/fisiopatología , Animales , Daño del ADN , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Hipocampo/metabolismo , Hipocampo/patología , Inflamación , Ratones , Microglía/inmunología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Fosfoproteínas/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Proteómica , Aprendizaje Espacial/fisiología , Memoria Espacial/fisiología , Sinapsis/metabolismo , Sinapsis/patología , Corteza Visual/metabolismo , Corteza Visual/patología
8.
Nat Protoc ; 13(8): 1850-1868, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30072722

RESUMEN

Microglia, the primary immune cells of the brain, play a key role in pathological and normal brain function. Growing efforts aim to reveal how these cells may be harnessed to treat both neurodegenerative diseases such as Alzheimer's and developmental disorders such as schizophrenia and autism. We recently showed that using noninvasive exposure to 40-Hz white-light (4,000 K) flicker to drive 40-Hz neural activity transforms microglia into an engulfing state and reduces amyloid beta, a peptide thought to initiate neurotoxic events in Alzheimer's disease (AD). This article describes how to construct an LED-based light-flicker apparatus, expose animals to 40-Hz flicker and control conditions, and perform downstream assays to study the effects of these stimuli. Light flicker is simple, faster to implement, and noninvasive, as compared with driving 40-Hz activity using optogenetics; however, it does not target specific cell types, as is achievable with optogenetics. This noninvasive approach to driving 40-Hz neural activity should enable further research into the interactions between neural activity, molecular pathology, and the brain's immune system. Construction of the light-flicker system requires ~1 d and some electronics experience or available guidance. The flicker manipulation and assessment can be completed in a few days, depending on the experimental design.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Endocitosis/efectos de la radiación , Luz , Microglía/metabolismo , Microglía/efectos de la radiación , Animales , Biotransformación , Ratones
9.
Nature ; 562(7725): E1, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30046102

RESUMEN

Change history: In this Article, Extended Data Fig. 8 and Extended Data Table 1 contained errors, which have been corrected online.

10.
Biol Psychiatry ; 84(1): 65-75, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395043

RESUMEN

BACKGROUND: Ketamine is an N-methyl-D-aspartate receptor antagonist, which on administration produces fast-acting antidepressant responses in patients with major depressive disorder. Yet, the mechanism underlying the antidepressant action of ketamine remains unclear. METHODS: To unravel the mechanism of action of ketamine, we treated wild-type C57BL/6 mice with calcium/calmodulin-dependent protein kinase II (CaMKII) specific inhibitor tatCN21 peptide. We also used eukaryotic elongation factor 2 kinase (eEF2K) (also known as CaMKIII) knockout mice. We analyzed the effects biochemically and behaviorally, using the forced swim, tail suspension, and novelty suppressed feeding tests. RESULTS: Consistent with the literature, one of the major pathways mediating the antidepressant action of ketamine was reduction of phosphorylation of eEF2 via eEF2K. Specifically, knocking out eEF2K in mice eliminated phosphorylation of eEF2 at threonine at position 56, resulting in increased protein synthesis, and made mice resistant both biochemically and behaviorally to the antidepressant effects of ketamine. In addition, administration of ketamine led to differential regulation of CaMKII function, manifested as autoinhibition (pT305 phosphorylation) followed by autoactivation (pT286) of CaMKIIα in the hippocampus and cortex. The inhibition phase of CaMKII, which lasted 10 to 20 minutes after administration of ketamine, occurred concurrently with eEF2K-dependent increased protein synthesis. Moreover, ketamine administration-dependent delayed induction of GluA1 (24 hours) was regulated by the activation of CaMKII. Importantly, systemic administration of the CaMKII inhibitor tatCN21 increased global protein synthesis and induced behavioral resistance to ketamine. CONCLUSIONS: Our data suggest that drugs that selectively target CaMKs and regulate protein synthesis offer novel strategies for treatment of major depressive disorder.


Asunto(s)
Antidepresivos/uso terapéutico , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Depresión/tratamiento farmacológico , Quinasa del Factor 2 de Elongación/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ketamina/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Quinasa del Factor 2 de Elongación/genética , Inhibidores Enzimáticos/farmacología , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica/genética , Suspensión Trasera/psicología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Puromicina/farmacología , Receptores AMPA/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Natación/psicología
11.
Cell Rep ; 21(2): 366-380, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29020624

RESUMEN

Microglia, the tissue-resident macrophages in the brain, are damage sensors that react to nearly any perturbation, including neurodegenerative diseases such as Alzheimer's disease (AD). Here, using single-cell RNA sequencing, we determined the transcriptome of more than 1,600 individual microglia cells isolated from the hippocampus of a mouse model of severe neurodegeneration with AD-like phenotypes and of control mice at multiple time points during progression of neurodegeneration. In this neurodegeneration model, we discovered two molecularly distinct reactive microglia phenotypes that are typified by modules of co-regulated type I and type II interferon response genes, respectively. Furthermore, our work identified previously unobserved heterogeneity in the response of microglia to neurodegeneration, discovered disease stage-specific microglia cell states, revealed the trajectory of cellular reprogramming of microglia in response to neurodegeneration, and uncovered the underlying transcriptional programs.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Activación de Macrófagos , Microglía/metabolismo , Transcriptoma , Animales , Encéfalo/citología , Encéfalo/metabolismo , Células Cultivadas , Perfilación de la Expresión Génica , Interferón Tipo I/genética , Interferón gamma/genética , Macrófagos/metabolismo , Ratones , Microglía/citología , Fenotipo , Análisis de la Célula Individual
12.
Nature ; 540(7632): 230-235, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27929004

RESUMEN

Changes in gamma oscillations (20-50 Hz) have been observed in several neurological disorders. However, the relationship between gamma oscillations and cellular pathologies is unclear. Here we show reduced, behaviourally driven gamma oscillations before the onset of plaque formation or cognitive decline in a mouse model of Alzheimer's disease. Optogenetically driving fast-spiking parvalbumin-positive (FS-PV)-interneurons at gamma (40 Hz), but not other frequencies, reduces levels of amyloid-ß (Aß)1-40 and Aß 1-42 isoforms. Gene expression profiling revealed induction of genes associated with morphological transformation of microglia, and histological analysis confirmed increased microglia co-localization with Aß. Subsequently, we designed a non-invasive 40 Hz light-flickering regime that reduced Aß1-40 and Aß1-42 levels in the visual cortex of pre-depositing mice and mitigated plaque load in aged, depositing mice. Our findings uncover a previously unappreciated function of gamma rhythms in recruiting both neuronal and glial responses to attenuate Alzheimer's-disease-associated pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Ritmo Gamma , Microglía/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/prevención & control , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Forma de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Ritmo Gamma/efectos de la radiación , Interneuronas/metabolismo , Interneuronas/efectos de la radiación , Luz , Masculino , Ratones , Microglía/citología , Microglía/efectos de la radiación , Optogenética , Parvalbúminas/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/terapia , Transcriptoma , Corteza Visual/fisiología , Corteza Visual/efectos de la radiación
13.
Elife ; 4: e07582, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26452094

RESUMEN

Events separated in time are associatively learned in trace conditioning, recruiting more neuronal circuits and molecular mechanisms than in delay conditioning. However, it remains unknown whether a given sensory memory trace is being maintained as a unitary item to associate. Here, we used conditioned taste aversion learning in the rat model, wherein animals associate a novel taste with visceral nausea, and demonstrate that there are two parallel memory traces of a novel taste: a short-duration robust trace, lasting approximately 3 hr, and a parallel long-duration weak one, lasting up to 8 hr, and dependent on the strong trace for its formation. Moreover, only the early robust trace is maintained by a NMDAR-dependent CaMKII- AMPAR pathway in the insular cortex. These findings suggest that a memory trace undergoes rapid modifications, and that the mechanisms underlying trace associative learning differ when items in the memory are experienced at different time points.


Asunto(s)
Reacción de Prevención , Corteza Cerebral/fisiología , Memoria , Gusto , Animales , Condicionamiento Clásico , Ratas
14.
Exp Neurobiol ; 21(2): 37-51, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22792024

RESUMEN

Protein phosphorylation and dephosphorylation form a major post-translation mechanism that enables a given cell to respond to ever-changing internal and external environments. Neurons, similarly to any other cells, use protein phosphorylation/dephosphorylation to maintain an internal homeostasis, but they also use it for updating the state of synaptic and intrinsic properties, following activation by neurotransmitters and growth factors. In the present review we focus on the roles of several families of kinases, phosphatases, and other synaptic-plasticity-related proteins, which activate membrane receptors and various intracellular signals to promote transcription, translation and protein degradation, and to regulate the appropriate cellular proteomes required for taste memory acquisition, consolidation and maintenance. Attention is especially focused on the protein phosphorylation state in two forebrain areas that are necessary for taste-memory learning and retrieval: the insular cortex and the amygdala. The various temporal phases of taste learning require the activation of appropriate waves of biochemical signals. These include: extracellular signal regulated kinase I and II (ERKI/II) signal transduction pathways; Ca(2+)-dependent pathways; tyrosine kinase/phosphatase-dependent pathways; brain-derived neurotrophicfactor (BDNF)-dependent pathways; cAMP-responsive element bindingprotein (CREB); and translation-regulation factors, such as initiation and elongation factors, and the mammalian target of rapamycin (mTOR). Interestingly, coding of hedonic and aversive taste information in the forebrain requires activation of different signal transduction pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...