Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 82(22): 6799-6807, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27637877

RESUMEN

Microbially influenced corrosion (MIC) is a major cause of damage to steel infrastructure in the marine environment. Despite their ability to grow directly on Fe(II) released from steel, comparatively little is known about the role played by neutrophilic iron-oxidizing bacteria (FeOB). Recent work has shown that FeOB grow readily on mild steel (1018 MS) incubated in situ or as a substrate for pure cultures in vitro; however, details of how they colonize steel surfaces are unknown yet are important for understanding their effects. In this study, we combine a novel continuously upwelling microcosm with confocal laser scanning microscopy (CLSM) to determine the degree of colonization of 1018 MS by the marine FeOB strain DIS-1. 1018 MS coupons were incubated with sterile seawater (pH 8) inoculated with strain DIS-1. Incubations were performed both under oxic conditions and in an anoxic-to-oxic gradient. Following incubations of 1 to 10 days, the slides were removed from the microcosms and stained to visualize both cells and stalk structures. Stained coupons were visualized by CLSM after being mounted in a custom frame to preserve the three-dimensional structure of the biofilm. The incubation of 1018 MS coupons with strain DIS-1 under oxic conditions resulted in initial attachment of cells within 2 days and nearly total coverage of the coupon with an ochre film within 5 days. CLSM imaging revealed a nonadherent biofilm composed primarily of the Fe-oxide stalks characteristic of strain DIS-1. When incubated with elevated concentrations of Fe(II), DIS-1 colonization of 1018 MS was inhibited. IMPORTANCE: These experiments describe the growth of a marine FeOB in a continuous culture system and represent direct visualizations of steel colonization by FeOB. We anticipate that these experiments will lay the groundwork for studying the mechanisms by which FeOB colonize steel and help to elucidate the role played by marine FeOB in MIC. These observations of the interaction between an FeOB, strain DIS-1, and steel suggest that this experimental system will provide a useful model for studying the interactions between microbes and solid substrates.


Asunto(s)
Hierro/metabolismo , Oxígeno/metabolismo , Proteobacteria/crecimiento & desarrollo , Acero , Biopelículas/crecimiento & desarrollo , Corrosión , Microscopía Confocal , Oxidación-Reducción , Proteobacteria/fisiología , Proteobacteria/ultraestructura , Agua de Mar/microbiología
2.
Environ Sci Technol ; 50(1): 114-25, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26588096

RESUMEN

Fe(II)-oxidizing bacteria form biogenic cell-mineral aggregates (CMAs) composed of microbial cells, extracellular organic compounds, and ferric iron minerals. CMAs are capable of immobilizing large quantities of heavy metals, such as nickel, via sorption processes. CMAs play an important role for the fate of heavy metals in the environment, particularly in systems characterized by elevated concentrations of dissolved metals, such as mine drainage or contaminated sediments. We applied scanning transmission (soft) X-ray microscopy (STXM) spectrotomography for detailed 3D chemical mapping of nickel sorbed to CMAs on the submicron scale. We analyzed different CMAs produced by phototrophic or nitrate-reducing microbial Fe(II) oxidation and, in addition, a twisted stalk structure obtained from an environmental biofilm. Nickel showed a heterogeneous distribution and was found to be preferentially sorbed to biogenically precipitated iron minerals such as Fe(III)-(oxyhydr)oxides and, to a minor extent, associated with organic compounds. Some distinct nickel accumulations were identified on the surfaces of CMAs. Additional information obtained from scatter plots and angular distance maps, showing variations in the nickel-iron and nickel-organic carbon ratios, also revealed a general correlation between nickel and iron. Although a high correlation between nickel and iron was observed in 2D maps, 3D maps revealed this to be partly due to projection artifacts. In summary, by combining different approaches for data analysis, we unambiguously showed the heterogeneous sorption behavior of nickel to CMAs.


Asunto(s)
Bacterias/química , Bacterias/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Níquel/química , Níquel/metabolismo , Adsorción , Oxidación-Reducción
3.
Appl Environ Microbiol ; 81(6): 2173-81, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25595759

RESUMEN

The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Bacterias/clasificación , Biota , Cadmio/metabolismo , Microbiología del Suelo , Zinc/metabolismo , Bacterias/genética , Bacterias/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Rizosfera , Análisis de Secuencia de ADN
4.
Environ Sci Technol ; 47(23): 13430-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24191747

RESUMEN

Cadmium (Cd) is of environmental relevance as it enters soils via Cd-containing phosphate fertilizers and endangers human health when taken up by crops. Cd is known to associate with Fe(III) (oxyhydr)oxides in pH-neutral to slightly acidic soils, though it is not well understood how the interrelation of Fe and Cd changes under Fe(III)-reducing conditions. Therefore, we investigated how the mobility of Cd changes when a Cd-bearing soil is faced with organic carbon input and reducing conditions. Using fatty acid profiles and quantitative PCR, we found that both fermenting and Fe(III)-reducing bacteria were stimulated by organic carbon-rich conditions, leading to significant Fe(III) reduction. The reduction of Fe(III) minerals was accompanied by increasing soil pH, increasing dissolved inorganic carbon, and decreasing Cd mobility. SEM-EDX mapping of soil particles showed that a minor fraction of Cd was transferred to Ca- and S-bearing minerals, probably carbonates and sulfides. Most of the Cd, however, correlated with a secondary iron mineral phase that was formed during microbial Fe(III) mineral reduction and contained mostly Fe, suggesting an iron oxide mineral such as magnetite (Fe3O4). Our data thus provide evidence that secondary Fe(II) and Fe(II)/Fe(III) mixed minerals could be a sink for Cd in soils under reducing conditions, thus decreasing the mobility of Cd in the soil.


Asunto(s)
Bacterias/metabolismo , Cadmio/química , Carbono/metabolismo , Hierro/metabolismo , Minerales/metabolismo , Contaminantes del Suelo/química , Acetatos/metabolismo , Bacterias/genética , Dosificación de Gen , Concentración de Iones de Hidrógeno , Hierro/química , Lactatos/metabolismo , Minerales/química , Oxidación-Reducción , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...