Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1460669, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247625

RESUMEN

Introduction: We have recently demonstrated that Sox10-expressing (Sox10 +) cells give rise to mainly type-III neuronal taste bud cells that are responsible for sour and salt taste. The two tissue compartments containing Sox10 + cells in the surrounding of taste buds include the connective tissue core of taste papillae and von Ebner's glands (vEGs) that are connected to the trench of circumvallate and foliate papillae. Methods: In this study, we performed single cell RNA-sequencing of the epithelium of Sox10-Cre/tdT mouse circumvallate/vEG complex and used inducible Cre mouse models to map the cell lineages of vEGs and/or connective tissue (including stromal and Schwann cells). Results: Transcriptomic analysis indicated that Sox10 expression was enriched in the cell clusters of vEG ducts that contained abundant proliferating cells, while Sox10-Cre/tdT expression was enriched in type-III taste bud cells and vEG ductal cells. In vivo lineage mapping showed that the traced cells were distributed in circumvallate taste buds concurrently with those in the vEGs, but not in the connective tissue. Moreover, multiple genes encoding pathogen receptors were enriched in the vEG ducts hosting Sox10 + cells. Discussion: Our data supports that it is the vEGs, not connective tissue core, that serve as the niche of Sox10 + taste bud progenitors. If this is also true in humans, our data indicates that vEG duct is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections.

2.
Nat Commun ; 15(1): 7065, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152112

RESUMEN

The sympathetic nervous system controls bodily functions including vascular tone, cardiac rhythm, and the "fight-or-flight response". Sympathetic chain ganglia develop in parallel with preganglionic motor nerves extending from the neural tube, raising the question of whether axon targeting contributes to sympathetic chain formation. Using nerve-selective genetic ablations and lineage tracing in mouse, we reveal that motor nerve-associated Schwann cell precursors (SCPs) contribute sympathetic neurons and satellite glia after the initial seeding of sympathetic ganglia by neural crest. Motor nerve ablation causes mispositioning of SCP-derived sympathoblasts as well as sympathetic chain hypoplasia and fragmentation. Sympathetic neurons in motor-ablated embryos project precociously and abnormally towards dorsal root ganglia, eventually resulting in fusion of sympathetic and sensory ganglia. Cell interaction analysis identifies semaphorins as potential motor nerve-derived signaling molecules regulating sympathoblast positioning and outgrowth. Overall, central innervation functions both as infrastructure and regulatory niche to ensure the integrity of peripheral ganglia morphogenesis.


Asunto(s)
Ganglios Simpáticos , Neuronas Motoras , Cresta Neural , Células de Schwann , Sistema Nervioso Simpático , Animales , Sistema Nervioso Simpático/embriología , Ratones , Neuronas Motoras/fisiología , Células de Schwann/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Ganglios Simpáticos/citología , Ganglios Espinales , Semaforinas/metabolismo , Semaforinas/genética , Ratones Transgénicos , Neuroglía/metabolismo , Femenino
3.
Mol Cancer ; 23(1): 180, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217332

RESUMEN

BACKGROUND: Neuroblastoma (NB) is a heterogeneous embryonal malignancy and the deadliest tumor of infancy. It is a complex disease that can result in diverse clinical outcomes. In some children, tumors regress spontaneously. Others respond well to existing treatments. But for the high-risk group, which constitutes approximately 40% of all patients, the prognosis remains dire despite collaborative efforts in basic and clinical research. While its exact cellular origin is still under debate, NB is assumed to arise from the neural crest cell lineage including multipotent Schwann cell precursors (SCPs), which differentiate into sympatho-adrenal cell states eventually producing chromaffin cells and sympathoblasts. METHODS: To investigate clonal development of neuroblastoma cell states, we performed haplotype-specific analysis of human tumor samples using single-cell multi-omics, including joint DNA/RNA sequencing of sorted single cells (DNTR-seq). Samples were also assessed using immunofluorescence stainings and fluorescence in-situ hybridization (FISH). RESULTS: Beyond adrenergic tumor cells, we identify subpopulations of aneuploid SCP-like cells, characterized by clonal expansion, whole-chromosome 17 gains, as well as expression programs of proliferation, apoptosis, and a non-immunomodulatory phenotype. CONCLUSION: Aneuploid pre-malignant SCP-like cells represent a novel feature of NB. Genetic evidence and tumor phylogeny suggest that these clones and malignant adrenergic populations originate from aneuploidy-prone cells of migrating neural crest or SCP origin, before lineage commitment to sympatho-adrenal cell states. Our findings expand the phenotypic spectrum of NB cell states. Considering the multipotency of SCPs in development, we suggest that the transformation of fetal SCPs may represent one possible mechanism of tumor initiation in NB with chromosome 17 aberrations as a characteristic element.


Asunto(s)
Perfilación de la Expresión Génica , Neuroblastoma , Células de Schwann , Análisis de la Célula Individual , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patología , Transcriptoma , Regulación Neoplásica de la Expresión Génica , Hibridación Fluorescente in Situ
4.
Nat Commun ; 15(1): 4632, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951500

RESUMEN

ANKRD11 (Ankyrin Repeat Domain 11) is a chromatin regulator and a causative gene for KBG syndrome, a rare developmental disorder characterized by multiple organ abnormalities, including cardiac defects. However, the role of ANKRD11 in heart development is unknown. The neural crest plays a leading role in embryonic heart development, and its dysfunction is implicated in congenital heart defects. We demonstrate that conditional knockout of Ankrd11 in the murine embryonic neural crest results in persistent truncus arteriosus, ventricular dilation, and impaired ventricular contractility. We further show these defects occur due to aberrant cardiac neural crest cell organization leading to outflow tract septation failure. Lastly, knockout of Ankrd11 in the neural crest leads to impaired expression of various transcription factors, chromatin remodelers and signaling pathways, including mTOR, BMP and TGF-ß in the cardiac neural crest cells. In this work, we identify Ankrd11 as a regulator of neural crest-mediated heart development and function.


Asunto(s)
Cardiopatías Congénitas , Corazón , Ratones Noqueados , Cresta Neural , Proteínas Represoras , Animales , Femenino , Ratones , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Miocardio/metabolismo , Cresta Neural/metabolismo , Cresta Neural/embriología , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transducción de Señal
5.
Sci Data ; 11(1): 626, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871782

RESUMEN

The chondrocranium provides the key initial support for the fetal brain, jaws and cranial sensory organs in all vertebrates. The patterns of shaping and growth of the chondrocranium set up species-specific development of the entire craniofacial complex. The 3D development of chondrocranium have been studied primarily in animal model organisms, such as mice or zebrafish. In comparison, very little is known about the full 3D human chondrocranium, except from drawings made by anatomists many decades ago. The knowledge of human-specific aspects of chondrocranial development are essential for understanding congenital craniofacial defects and human evolution. Here advanced microCT scanning was used that includes contrast enhancement to generate the first 3D atlas of the human fetal chondrocranium during the middle trimester (13 to 19 weeks). In addition, since cartilage and bone are both visible with the techniques used, the  endochondral ossification of cranial base was mapped since this region is so critical for brain and jaw growth. The human 3D models are published as a scientific resource for human development.


Asunto(s)
Imagenología Tridimensional , Humanos , Feto/diagnóstico por imagen , Femenino , Microtomografía por Rayos X , Cráneo/diagnóstico por imagen , Cráneo/embriología , Embarazo , Cartílago/diagnóstico por imagen , Cartílago/embriología
6.
bioRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798668

RESUMEN

We have recently demonstrated that Sox10 -expressing ( Sox10 + ) cells give rise to mainly type-III neuronal taste bud cells that are responsible for sour and salt taste. The two tissue compartments containing Sox10 + cells in the surrounding of taste buds include the connective tissue core of taste papillae and von Ebner's glands (vEGs) that are connected to the trench of circumvallate and foliate papillae. In this study, we used inducible Cre mouse models to map the cell lineages of connective tissue (including stromal and Schwann cells) and vEGs and performed single cell RNA-sequencing of the epithelium of Sox10-Cre/tdT mouse circumvallate/vEG complex. In vivo lineage mapping showed that the distribution of traced cells in circumvallate taste buds was closely linked with that in the vEGs, but not in the connective tissue. Sox10 , but not the known stem cells marker Lgr5 , expression was enriched in the cell clusters of main ducts of vEGs that contained abundant proliferating cells, while Sox10-Cre/tdT expression was enriched in type-III taste bud cells and excretory ductal cells. Moreover, multiple genes encoding pathogen receptors are enriched in the vEG main ducts. Our data indicate that the main duct of vEGs is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections.

7.
Gut ; 73(9): 1441-1453, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38816188

RESUMEN

OBJECTIVE: Hirschsprung disease (HSCR) is a severe congenital disorder affecting 1:5000 live births. HSCR results from the failure of enteric nervous system (ENS) progenitors to fully colonise the gastrointestinal tract during embryonic development. This leads to aganglionosis in the distal bowel, resulting in disrupted motor activity and impaired peristalsis. Currently, the only viable treatment option is surgical resection of the aganglionic bowel. However, patients frequently suffer debilitating, lifelong symptoms, with multiple surgical procedures often necessary. Hence, alternative treatment options are crucial. An attractive strategy involves the transplantation of ENS progenitors generated from human pluripotent stem cells (hPSCs). DESIGN: ENS progenitors were generated from hPSCs using an accelerated protocol and characterised, in detail, through a combination of single-cell RNA sequencing, protein expression analysis and calcium imaging. We tested ENS progenitors' capacity to integrate and affect functional responses in HSCR colon, after ex vivo transplantation to organotypically cultured patient-derived colonic tissue, using organ bath contractility. RESULTS: We found that our protocol consistently gives rise to high yields of a cell population exhibiting transcriptional and functional hallmarks of early ENS progenitors. Following transplantation, hPSC-derived ENS progenitors integrate, migrate and form neurons/glia within explanted human HSCR colon samples. Importantly, the transplanted HSCR tissue displayed significantly increased basal contractile activity and increased responses to electrical stimulation compared with control tissue. CONCLUSION: Our findings demonstrate, for the first time, the potential of hPSC-derived ENS progenitors to repopulate and increase functional responses in human HSCR patient colonic tissue.


Asunto(s)
Colon , Sistema Nervioso Entérico , Enfermedad de Hirschsprung , Enfermedad de Hirschsprung/cirugía , Enfermedad de Hirschsprung/terapia , Humanos , Células Madre Pluripotentes , Trasplante de Células Madre/métodos , Diferenciación Celular
8.
Nat Commun ; 15(1): 2367, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531868

RESUMEN

The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.


Asunto(s)
Transducción de Señal , Pez Cebra , Embarazo , Ratones , Animales , Femenino , Humanos , Proteínas , Diana Mecanicista del Complejo 1 de la Rapamicina , Dieta
9.
PLoS Comput Biol ; 19(11): e1011658, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38019884

RESUMEN

During early development, cartilage provides shape and stability to the embryo while serving as a precursor for the skeleton. Correct formation of embryonic cartilage is hence essential for healthy development. In vertebrate cranial cartilage, it has been observed that a flat and laterally extended macroscopic geometry is linked to regular microscopic structure consisting of tightly packed, short, transversal clonar columns. However, it remains an ongoing challenge to identify how individual cells coordinate to successfully shape the tissue, and more precisely which mechanical interactions and cell behaviors contribute to the generation and maintenance of this columnar cartilage geometry during embryogenesis. Here, we apply a three-dimensional cell-based computational model to investigate mechanical principles contributing to column formation. The model accounts for clonal expansion, anisotropic proliferation and the geometrical arrangement of progenitor cells in space. We confirm that oriented cell divisions and repulsive mechanical interactions between cells are key drivers of column formation. In addition, the model suggests that column formation benefits from the spatial gaps created by the extracellular matrix in the initial configuration, and that column maintenance is facilitated by sequential proliferative phases. Our model thus correctly predicts the dependence of local order on division orientation and tissue thickness. The present study presents the first cell-based simulations of cell mechanics during cranial cartilage formation and we anticipate that it will be useful in future studies on the formation and growth of other cartilage geometries.


Asunto(s)
Cartílago , Matriz Extracelular , Animales , División Celular , Vertebrados , Desarrollo Embrionario
10.
Nat Genet ; 55(11): 1901-1911, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37904053

RESUMEN

Genetic mutations accumulate in an organism's body throughout its lifetime. While somatic single-nucleotide variants have been well characterized in the human body, the patterns and consequences of large chromosomal alterations in normal tissues remain largely unknown. Here, we present a pan-tissue survey of mosaic chromosomal alterations (mCAs) in 948 healthy individuals from the Genotype-Tissue Expression project, augmenting RNA-based allelic imbalance estimation with haplotype phasing. We found that approximately a quarter of the individuals carry a clonally-expanded mCA in at least one tissue, with incidence strongly correlated with age. The prevalence and genome-wide patterns of mCAs vary considerably across tissue types, suggesting tissue-specific mutagenic exposure and selection pressures. The mCA landscapes in normal adrenal and pituitary glands resemble those in tumors arising from these tissues, whereas the same is not true for the esophagus and skin. Together, our findings show a widespread age-dependent emergence of mCAs across normal human tissues with intricate connections to tumorigenesis.


Asunto(s)
Aberraciones Cromosómicas , Neoplasias , Humanos , Mutación , Neoplasias/genética , Desequilibrio Alélico , Esófago
11.
Curr Biol ; 33(20): 4524-4531.e4, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741283

RESUMEN

Parasites have evolved a variety of astonishing strategies to survive within their hosts, yet the most challenging event in their personal chronicles is the passage from one host to another. It becomes even more complex when a parasite needs to pass through the external environment. Therefore, the free-living stages of parasites present a wide range of adaptations for transmission. Parasitic flatworms from the group Digenea (flukes) have free-living larvae, cercariae, which are remarkably diverse in structure and behavior.1,2 One of the cercariae transmission strategies is to attain a prey-like appearance for the host.3 This can be done through the formation of a swimming aggregate of several cercariae adjoined together by their tails.4 Through the use of live observations and light, electron, and confocal microscopy, we described such a supposedly prey-mimetic colony comprising cercariae of two distinct morphotypes. They are functionally specialized: larger morphotype (sailors) enable motility, and smaller morphotype (passengers) presumably facilitate infection. The analysis of local read alignments between the two samples reveals that both cercaria types have identical 18S, 28S, and 5.8S rRNA genes. Further phylogenetic analysis of these ribosomal sequences indicates that our specimen belongs to the digenean family Acanthocolpidae, likely genus Pleorchis. This discovery provides a unique example and a novel insight into how morphologically and functionally heterogeneous individuals of the same species cooperate to build colonial organisms for the purpose of infection. This strategy bears resemblance to the cooperating castes of the same species found among insects.5.


Asunto(s)
Parásitos , Trematodos , Humanos , Animales , Larva , Filogenia , Natación , Trematodos/anatomía & histología , Trematodos/genética , Cercarias/anatomía & histología , Cercarias/genética
12.
Nat Commun ; 14(1): 5904, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737269

RESUMEN

Glial cells have been proposed as a source of neural progenitors, but the mechanisms underpinning the neurogenic potential of adult glia are not known. Using single cell transcriptomic profiling, we show that enteric glial cells represent a cell state attained by autonomic neural crest cells as they transition along a linear differentiation trajectory that allows them to retain neurogenic potential while acquiring mature glial functions. Key neurogenic loci in early enteric nervous system progenitors remain in open chromatin configuration in mature enteric glia, thus facilitating neuronal differentiation under appropriate conditions. Molecular profiling and gene targeting of enteric glial cells in a cell culture model of enteric neurogenesis and a gut injury model demonstrate that neuronal differentiation of glia is driven by transcriptional programs employed in vivo by early progenitors. Our work provides mechanistic insight into the regulatory landscape underpinning the development of intestinal neural circuits and generates a platform for advancing glial cells as therapeutic agents for the treatment of neural deficits.


Asunto(s)
Neurogénesis , Neuroglía , Adulto , Humanos , Neurogénesis/genética , Diferenciación Celular , Sistema Nervioso Autónomo , Técnicas de Cultivo de Célula
14.
Development ; 150(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37170957

RESUMEN

The peripheral nervous system (PNS) represents a highly heterogeneous entity with a broad range of functions, ranging from providing communication between the brain and the body to controlling development, stem cell niches and regenerative processes. According to the structure and function, the PNS can be subdivided into sensory, motor (i.e. the nerve fibers of motor neurons), autonomic and enteric domains. Different types of neurons correspond to these domains and recent progress in single-cell transcriptomics has enabled the discovery of new neuronal subtypes and improved the previous cell-type classifications. The developmental mechanisms generating the domains of the PNS reveal a range of embryonic strategies, including a variety of cell sources, such as migratory neural crest cells, placodal neurogenic cells and even recruited nerve-associated Schwann cell precursors. In this article, we discuss the diversity of roles played by the PNS in our body, as well as the origin, wiring and heterogeneity of every domain. We place a special focus on the most recent discoveries and concepts in PNS research, and provide an outlook of future perspectives and controversies in the field.


Asunto(s)
Neurogénesis , Sistema Nervioso Periférico , Cresta Neural , Células de Schwann , Neuronas Motoras
15.
Nat Commun ; 14(1): 3060, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244931

RESUMEN

Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.


Asunto(s)
Músculo Esquelético , Pez Cebra , Animales , Ratones , Pez Cebra/genética , Músculo Esquelético/fisiología , Miofibrillas/fisiología , Morfogénesis , Mioblastos/fisiología
16.
Nat Commun ; 14(1): 3092, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248239

RESUMEN

In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.


Asunto(s)
Metabolismo Energético , Estudio de Asociación del Genoma Completo , Animales , Humanos , Peso Corporal , Metabolismo Energético/genética , Ferritinas/genética , Riñón , Hombre de Neandertal
17.
Cell Stem Cell ; 30(5): 501-502, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37146574

RESUMEN

In this issue, Majd et al.1 derive Schwann cells from human pluripotent stem cells (hPSCs), which can be used to study Schwann cell development and physiology and model diabetic neuropathy. hPSC-derived Schwann cells possess the molecular features of primary Schwann cells and are capable of myelination in vitro and in vivo.


Asunto(s)
Células Madre Pluripotentes , Células de Schwann , Humanos , Diferenciación Celular , Descubrimiento de Drogas
18.
Curr Biol ; 33(8): R319-R331, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37098338

RESUMEN

The central nervous system (CNS) of chordates, including humans, develops as a hollow tube with ciliated walls containing cerebrospinal fluid. However, most of the animals inhabiting our planet do not use this design and rather build their centralized brains from non-epithelialized condensations of neurons called ganglia, with no traces of epithelialized tubes or liquid-containing cavities. The evolutionary origin of tube-type CNSs stays enigmatic, especially as non-epithelialized ganglionic-type nervous systems dominate the animal kingdom. Here, I discuss recent findings relevant to understanding the potential homologies and scenarios of the origin, histology and anatomy of the chordate neural tube. The nerve cords of other deuterostomes might relate to the chordate neural tube at histological, developmental and cellular levels, including the presence of radial glia, layered stratification, retained epithelial features, morphogenesis via folding and formation of a lumen filled with liquid. Recent findings inspire a new view of hypothetical evolutionary scenarios explaining the tubular epithelialized structure of the CNS. One such idea suggests that early neural tubes were key for improved directional olfaction, which was facilitated by the liquid-containing internal cavity. The later separation of the olfactory portion of the tube led to the formation of the independent olfactory and posterior tubular CNS systems in vertebrates. According to an alternative hypothesis, the thick basiepithelial nerve cords could provide deuterostome ancestors with additional biomechanical support, which later improved by turning the basiepithelial cord into a tube filled with liquid - a hydraulic skeleton.


Asunto(s)
Cordados , Tubo Neural , Animales , Humanos , Cordados/anatomía & histología , Evolución Biológica , Vertebrados , Sistema Nervioso Central
19.
Nat Neurosci ; 26(5): 891-901, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37095395

RESUMEN

The spatiotemporal regulation of cell fate specification in the human developing spinal cord remains largely unknown. In this study, by performing integrated analysis of single-cell and spatial multi-omics data, we used 16 prenatal human samples to create a comprehensive developmental cell atlas of the spinal cord during post-conceptional weeks 5-12. This revealed how the cell fate commitment of neural progenitor cells and their spatial positioning are spatiotemporally regulated by specific gene sets. We identified unique events in human spinal cord development relative to rodents, including earlier quiescence of active neural stem cells, differential regulation of cell differentiation and distinct spatiotemporal genetic regulation of cell fate choices. In addition, by integrating our atlas with pediatric ependymomas data, we identified specific molecular signatures and lineage-specific genes of cancer stem cells during progression. Thus, we delineate spatiotemporal genetic regulation of human spinal cord development and leverage these data to gain disease insight.


Asunto(s)
Ependimoma , Células-Madre Neurales , Niño , Femenino , Embarazo , Humanos , Médula Espinal , Ependimoma/genética , Ependimoma/metabolismo , Diferenciación Celular/genética , Células-Madre Neurales/fisiología , Expresión Génica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética
20.
Cardiovasc Res ; 119(5): 1202-1217, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36635482

RESUMEN

AIMS: Retinoic acid (RA) signalling is essential for heart development, and dysregulation of the RA signalling can cause several types of cardiac outflow tract (OFT) defects, the most frequent congenital heart disease (CHD) in humans. Matthew-Wood syndrome is caused by inactivating mutations of a transmembrane protein gene STRA6 that transports vitamin A (retinol) from extracellular into intracellular spaces. This syndrome shows a broad spectrum of malformations including CHD, although murine Stra6-null neonates did not exhibit overt heart defects. Thus, the detailed mechanisms by which STRA6 mutations could lead to cardiac malformations in humans remain unclear. Here, we investigated the role of STRA6 in the context of human cardiogenesis and CHD. METHODS AND RESULTS: To gain molecular signatures in species-specific cardiac development, we first compared single-cell RNA sequencing (RNA-seq) datasets, uniquely obtained from human and murine embryonic hearts. We found that while STRA6 mRNA was much less frequently expressed in murine embryonic heart cells derived from the Mesp1+ lineage tracing mice (Mesp1Cre/+; Rosa26tdTomato), it was expressed predominantly in the OFT region-specific heart progenitors in human developing hearts. Next, we revealed that STRA6-knockout human embryonic stem cells (hESCs) could differentiate into cardiomyocytes similarly to wild-type hESCs, but could not differentiate properly into mesodermal nor neural crest cell-derived smooth muscle cells (SMCs) in vitro. This is supported by the population RNA-seq data showing down-regulation of the SMC-related genes in the STRA6-knockout hESC-derived cells. Further, through machinery assays, we identified the previously unrecognized interaction between RA nuclear receptors RARα/RXRα and TBX1, an OFT-specific cardiogenic transcription factor, which would likely act downstream to STRA6-mediated RA signalling in human cardiogenesis. CONCLUSION: Our study highlights the critical role of human-specific STRA6 progenitors for proper induction of vascular SMCs that is essential for normal OFT formation. Thus, these results shed light on novel and human-specific CHD mechanisms, driven by STRA6 mutations.


Asunto(s)
Cardiopatías Congénitas , Músculo Liso Vascular , Humanos , Animales , Ratones , Músculo Liso Vascular/metabolismo , Corazón , Cardiopatías Congénitas/genética , Regulación de la Expresión Génica , Tretinoina/farmacología , Tretinoina/metabolismo , Vitamina A , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...