Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961726

RESUMEN

The rise of drug resistance has become a global crisis, with >1 million deaths due to resistant bacterial infections each year. Pseudomonas aeruginosa, in particular, remains a serious problem with limited solutions due to complex resistance mechanisms that now lead to more than 32,000 multidrug-resistant (MDR) infections and over 2,000 deaths annually. While the emergence of resistant bacteria has become concerningly common, identification of useful new drug classes has been limited over the past 40+ years. We found that a potential novel therapeutic, the peptide-mimetic TM5, is effective at killing P. aeruginosa and displays sufficiently low toxicity for mammalian cells to allow for use in treatment of infections. Interestingly, TM5 kills P. aeruginosa more rapidly than traditional antibiotics, within 30-60 minutes in vitro , and is effective against a range of clinical isolates. In vivo , TM5 significantly reduced bacterial load in the lungs within 24 hours compared to untreated mice and demonstrated few adverse effects. Taken together, these observations suggest that TM5 shows promise as an alternative therapy for MDR P. aeruginosa respiratory infections.

2.
Front Microbiol ; 8: 1275, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28798726

RESUMEN

To date, fewer than 200 gene-products have been identified as Brucella virulence factors, and most were characterized individually without considering how they are temporally and coordinately expressed or secreted during the infection process. Here, we describe and analyze the in vivo temporal transcriptional profile of Brucella melitensis during the initial 4 h interaction with cattle. Pathway analysis revealed an activation of the "Two component system" providing evidence that the in vivo Brucella sense and actively regulate their metabolism through the transition to an intracellular lifestyle. Contrarily, other Brucella pathways involved in virulence such as "ABC transporters" and "T4SS system" were repressed suggesting a silencing strategy to avoid stimulation of the host innate immune response very early in the infection process. Also, three flagellum-encoded loci (BMEII0150-0168, BMEII1080-1089, and BMEII1105-1114), the "flagellar assembly" pathway and the cell components "bacterial-type flagellum hook" and "bacterial-type flagellum" were repressed in the tissue-associated B. melitensis, while RopE1 sigma factor, a flagellar repressor, was activated throughout the experiment. These results support the idea that Brucella employ a stealthy strategy at the onset of the infection of susceptible hosts. Further, through systems-level in silico host:pathogen protein-protein interactions simulation and correlation of pathogen gene expression with the host gene perturbations, we identified unanticipated interactions such as VirB11::MAPK8IP1; BtaE::NFKBIA, and 22 kDa OMP precursor::BAD and MAP2K3. These findings are suggestive of new virulence factors and mechanisms responsible for Brucella evasion of the host's protective immune response and the capability to maintain a dormant state. The predicted protein-protein interactions and the points of disruption provide novel insights that will stimulate advanced hypothesis-driven approaches toward revealing a clearer understanding of new virulence factors and mechanisms influencing the pathogenesis of brucellosis.

3.
Curr Trop Med Rep ; 3(4): 164-172, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29226068

RESUMEN

PURPOSE OF REVIEW: Brucellosis is a neglected, zoonotic disease of nearly worldwide distribution. Despite brucellosis being recognized as a reproductive disease in animals, it has been historically known as a flu-like illness in humans with little or no significant role in maternal or newborn health. This review focuses on what is currently known relative to the epidemiology of brucellosis in human pregnancy as well as new insights of placental immunology. RECENT FINDINGS: New evidence suggests that maternal infection poses a significant risk factor for adverse pregnancy outcomes including increased risk for miscarriage during the first and second trimester of gestation, preterm delivery, and vertical transmission to the fetus. Adverse pregnancy outcomes were not associated with any specific clinical sign. However, prompt diagnosis and treatment significantly decreased the risk of miscarriage or any other adverse effect. SUMMARY: Brucellosis during pregnancy should be considered a significant risk factor for adverse pregnancy outcomes in humans. The identification of the mechanism behind bacterial tropism should prove powerful for the development of new countermeasures to prevent these detrimental effects. Increased awareness concerning brucellosis in pregnant women, its transmission, and prevention measures should be considered as a pressing need.

4.
Artículo en Inglés | MEDLINE | ID: mdl-23720712

RESUMEN

Vaccination is the most important approach to counteract infectious diseases. Thus, the development of new and improved vaccines for existing, emerging, and re-emerging diseases is an area of great interest to the scientific community and general public. Traditional approaches to subunit antigen discovery and vaccine development lack consideration for the critical aspects of public safety and activation of relevant protective host immunity. The availability of genomic sequences for pathogenic Brucella spp. and their hosts have led to development of systems-wide analytical tools that have provided a better understanding of host and pathogen physiology while also beginning to unravel the intricacies at the host-pathogen interface. Advances in pathogen biology, host immunology, and host-agent interactions have the potential to serve as a platform for the design and implementation of better-targeted antigen discovery approaches. With emphasis on Brucella spp., we probe the biological aspects of host and pathogen that merit consideration in the targeted design of subunit antigen discovery and vaccine development.


Asunto(s)
Antígenos Bacterianos/inmunología , Vacunas Bacterianas/inmunología , Brucella/inmunología , Brucelosis/inmunología , Brucelosis/prevención & control , Genoma Bacteriano , Interacciones Huésped-Patógeno , Animales , Vacunas Bacterianas/genética , Vacunas Bacterianas/aislamiento & purificación , Brucella/genética , Descubrimiento de Drogas/métodos , Genómica/métodos , Humanos , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA