RESUMEN
Renewable alternatives for nonelectrifiable fossil-derived chemicals are needed and plant matter, the most abundant biomass on Earth, provide an ideal feedstock. However, the heterogeneous polymeric composition of lignocellulose makes conversion difficult. Lignin presents a formidable barrier to fermentation of nonpretreated biomass. Extensive chemical and enzymatic treatments can liberate fermentable carbohydrates from plant biomass, but microbial routes offer many advantages, including concomitant conversion to industrial chemicals. Here, testing of lignin content of nonpretreated biomass using the cellulolytic thermophilic bacterium, Anaerocellum bescii, revealed that the primary microbial degradation barrier relates to methoxy substitutions in lignin. This contrasts with optimal lignin composition for chemical pretreatment that favors high S/G ratio and low H lignin. Genetically modified poplar trees with diverse lignin compositions confirm these findings. In addition, poplar trees with low methoxy content achieve industrially relevant levels of microbial solubilization without any pretreatments and with no impact on tree fitness in greenhouse.
Asunto(s)
Biomasa , Fermentación , Lignina , Populus , Lignina/metabolismo , Populus/metabolismo , Populus/genética , Bacterias/metabolismo , Bacterias/genética , Plantas/metabolismoRESUMEN
The anaerobic bacterium Anaerocellum (f. Caldicellulosiruptor) bescii natively ferments the carbohydrate content of plant biomass (including microcrystalline cellulose) into predominantly acetate, H2, and CO2, and smaller amounts of lactate, alanine and valine. While this extreme thermophile (growth Topt 78 °C) is not natively ethanologenic, it has been previously metabolically engineered with this property, albeit initially yielding low solvent titers (â¼15 mM). Herein we report significant progress on improving ethanologenicity in A. bescii, such that titers above 130 mM have now been achieved, while concomitantly improving selectivity by minimizing acetate formation. Metabolic engineering progress has benefited from improved molecular genetic tools and better understanding of A. bescii growth physiology. Heterologous expression of a mutated thermophilic alcohol dehydrogenase (AdhE) modified for co-factor requirement, coupled with bioreactor operation strategies related to pH control, have been key to enhanced ethanol generation and fermentation product specificity. Insights gained from metabolic modeling of A. bescii set the stage for its further improvement as a metabolic engineering platform.
RESUMEN
Diets containing inorganic phosphate additives are unbalanced with respect to calcium and these diets have been linked to the development of altered bone metabolism. Using 2 randomized cross-over studies in healthy humans, we (1) characterized the hormonal and urinary response to 2 meals with the same reported phosphorus amount (562-572 mg), where one was manufactured with inorganic phosphate additives and a comparatively lower Ca:P molar ratio (0.26 vs 0.48), and (2) assessed how acute homeostatic mechanisms adapt following 5-d exposure to recommended dietary phosphorus amount (~700 mg P/d) compared to a diet enriched with inorganic phosphate additives (~1100 mg P/d). Participants were then challenged with 500 mg of oral phosphorus in the form of inorganic phosphate after an overnight fast following each diet condition. Measurements included serum calcium, phosphate, PTH, and fibroblast growth factor 23 , vitamin D metabolites, and urine calcium and phosphate excretion. Following the meal containing inorganic phosphate additives with a low Ca:P ratio, serum phosphate was higher and more phosphate was excreted in the urine compared to the low additive meal. Although the Ca:P and calcium content was lower in the high additive meal, the same amount of calcium was excreted into the urine. Subsequently, increasing only dietary phosphate through additives resulted in lower 24-h excretion of calcium. The oral phosphate challenge promoted urinary calcium excretion, despite no consumption of calcium, which was attenuated when pre-acclimated to a high phosphate diet. These data suggest that ingestion of inorganic phosphate promotes calcium excretion, but homeostatic mechanisms may exist to reduce calcium excretion that are responsive to dietary intake of phosphate. Future studies are required to evaluate potential implication of diets enriched with inorganic phosphate additives on bone health.
RESUMEN
Many factors contribute to the ability of a microbial species to persist when encountering complexly contaminated environments, including time of exposure, the nature and concentration of contaminants, availability of nutritional resources, and possession of a combination of appropriate molecular mechanisms needed for survival. Herein we sought to identify genes that are most important for survival of Gram-negative Enterobacteriaceae in contaminated groundwater environments containing high concentrations of nitrate and metals using the metal-tolerant Oak Ridge Reservation isolate, Pantoea sp. MT58 (MT58). Survival fitness experiments in which a randomly barcoded transposon insertion (RB-TnSeq) library of MT58 was exposed directly to contaminated Oak Ridge Reservation groundwater samples from across a nitrate and mixed metal contamination plume were used to identify genes important for survival with increasing exposure times and concentrations of contaminants, and availability of a carbon source. Genes involved in controlling and using carbon, encoding transcriptional regulators, and related to Gram-negative outer membrane processes were among those found to be important for survival in contaminated Oak Ridge Reservation groundwater. A comparative genomics analysis of 75 Pantoea genus strains allowed us to further separate the survival determinants into core and non-core genes in the Pantoea pangenome, revealing insights into the survival of subsurface microorganisms during contaminant plume intrusion.
Asunto(s)
Agua Subterránea , Pantoea , Agua Subterránea/microbiología , Pantoea/genética , Pantoea/aislamiento & purificación , Pantoea/clasificación , Nitratos/metabolismo , Metales/metabolismo , Aptitud Genética , Elementos Transponibles de ADN , Viabilidad MicrobianaRESUMEN
We examined the impact of a hospital medicine medical procedure service (MPS) on hospital length of stay (LOS), postprocedure LOS, and completion of procedures on weekends. We included 4952 patients admitted to our large academic hospital between July 1, 2021 and July 31, 2023 who underwent thoracentesis, paracentesis, or lumbar puncture (LP). MPS performed 30% (1499) of these procedures. After adjusting for age, sex, body mass index, Charlson comorbidity score, and procedure type, procedure performance by MPS was associated with a shorter total hospital LOS (incidence rate ratio [IRR]: 0.93; 95% confidence interval [CI]: 0.87-0.99) and postprocedure LOS (IRR: 0.82; 95% CI: 0.76-0.88). Also, MPS-performed procedures were twice as likely to occur on weekends compared to non-MPS-performed procedures (odds ratio [OR]: 2.05; 95% CI: 1.75-2.41). These findings support the beneficial impact of MPS on operational efficiency, an important outcome for both patients and hospitals.
RESUMEN
Biofilms aid bacterial adhesion to surfaces via direct and indirect mechanisms, and formation of biofilms is considered as an important strategy for adaptation and survival in suboptimal environmental conditions. However, the molecular underpinnings of biofilm formation in subsurface sediment/groundwater ecosystems where microorganisms often experience fluctuations in nutrient input, pH, and nitrate or metal concentrations are underexplored. We examined biofilm formation under different nutrient, pH, metal, and nitrate regimens of 16 Rhodanobacter strains isolated from subsurface groundwater wells spanning diverse levels of pH (3.5 to 5) and nitrates (13.7 to 146 mM). Eight Rhodanobacter strains demonstrated significant biofilm growth under low pH, suggesting adaptations for survival and growth at low pH. Biofilms were intensified under aluminum stress, particularly in strains possessing fewer genetic traits associated with biofilm formation, findings warranting further investigation. Through random barcode transposon-site sequencing (RB-TnSeq), proteomics, use of specific mutants, and transmission electron microscopy analysis, we discovered flagellar loss under aluminum stress, indicating a potential relationship between motility, metal tolerance, and biofilm growth. Comparative genomic analyses revealed the absence of flagella and chemotaxis genes and the presence of a putative type VI secretion system in the highly biofilm-forming strain FW021-MT20. In this study we identified genetic determinants associated with biofilm growth under metal stress in a predominant environmental genus, Rhodanobacter, and identified traits aiding survival and adaptation to contaminated subsurface environments.
Asunto(s)
Adaptación Fisiológica , Aluminio , Biopelículas , Flagelos , Estrés Fisiológico , Biopelículas/crecimiento & desarrollo , Flagelos/genética , Flagelos/fisiología , Aluminio/toxicidad , Concentración de Iones de Hidrógeno , Nitratos/metabolismo , Agua Subterránea/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismoRESUMEN
Oxidoreductases facilitating electron transfer between molecules are pivotal in metabolic pathways. Flavin-based electron bifurcation (FBEB), a recently discovered energy coupling mechanism in oxidoreductases, enables the reversible division of electron pairs into two acceptors, bridging exergonic and otherwise unfeasible endergonic reactions. This chapter explores the four distinct FBEB complex families and highlights a decade of structural insights into FBEB complexes. In this chapter, we discuss the architecture, electron transfer routes, and conformational changes across all FBEB families, revealing the structural foundation that facilitate these remarkable functions.
Asunto(s)
Flavinas , Transporte de Electrón , Flavinas/metabolismo , Flavinas/química , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Conformación Proteica , Modelos Moleculares , Oxidación-ReducciónRESUMEN
Continuous monitoring of physiological signals from the human body is critical in health monitoring, disease diagnosis, and therapeutics. Despite the needs, the existing wearable medical devices rely on either bulky wired systems or battery-powered devices needing frequent recharging. Here, we introduce a wearable, self-powered, thermoelectric flexible system architecture for wireless portable monitoring of physiological signals without recharging batteries. This system harvests an exceptionally high open circuit voltage of 175-180 mV from the human body, powering the wireless wearable bioelectronics to detect electrophysiological signals on the skin continuously. The thermoelectric system shows long-term stability in performance for 7 days with stable power management. Integrating screen printing, laser micromachining, and soft packaging technologies enables a multilayered, soft, wearable device to be mounted on any body part. The demonstration of the self-sustainable wearable system for detecting electromyograms and electrocardiograms captures the potential of the platform technology to offer various opportunities for continuous monitoring of biosignals, remote health monitoring, and automated disease diagnosis.
Asunto(s)
Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Humanos , Tecnología Inalámbrica/instrumentación , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Suministros de Energía Eléctrica , Electrocardiografía/instrumentación , Electromiografía/instrumentación , Diseño de EquipoRESUMEN
Mobile genetic elements (MGEs) like plasmids, viruses, and transposable elements can provide fitness benefits to their hosts for survival in the presence of environmental stressors. Heavy metal resistance genes (HMRGs) are frequently observed on MGEs, suggesting that MGEs may be an important driver of adaptive evolution in environments contaminated with heavy metals. Here, we report the meta-mobilome of the heavy metal-contaminated regions of the Oak Ridge Reservation subsurface. This meta-mobilome was compared with one derived from samples collected from unimpacted regions of the Oak Ridge Reservation subsurface. We assembled 1615 unique circularized DNA elements that we propose to be MGEs. The circular elements from the highly contaminated subsurface were enriched in HMRG clusters relative to those from the nearby unimpacted regions. Additionally, we found that these HMRGs were associated with Gamma and Betaproteobacteria hosts in the contaminated subsurface and potentially facilitate the persistence and dominance of these taxa in this region. Finally, the HMRGs were associated with conjugative elements, suggesting their potential for future lateral transfer. We demonstrate how our understanding of MGE ecology, evolution, and function can be enhanced through the genomic context provided by completed MGE assemblies.
RESUMEN
Castellaniella species have been isolated from a variety of mixed-waste environments including the nitrate and multiple metal-contaminated subsurface at the Oak Ridge Reservation (ORR). Previous studies examining microbial community composition and nitrate removal at ORR during biostimulation efforts reported increased abundances of members of the Castellaniella genus concurrent with increased denitrification rates. Thus, we asked how genomic and abiotic factors control the Castellaniella biogeography at the site to understand how these factors may influence nitrate transformation in an anthropogenically impacted setting. We report the isolation and characterization of several Castellaniella strains from the ORR subsurface. Five of these isolates match at 100% identity (at the 16S rRNA gene V4 region) to two Castellaniella amplicon sequence variants (ASVs), ASV1 and ASV2, that have persisted in the ORR subsurface for at least 2 decades. However, ASV2 has consistently higher relative abundance in samples taken from the site and was also the dominant blooming denitrifier population during a prior biostimulation effort. We found that the ASV2 representative strain has greater resistance to mixed metal stress than the ASV1 representative strains. We attribute this resistance, in part, to the large number of unique heavy metal resistance genes identified on a genomic island in the ASV2 representative genome. Additionally, we suggest that the relatively lower fitness of ASV1 may be connected to the loss of the nitrous oxide reductase (nos) operon (and associated nitrous oxide reductase activity) due to the insertion at this genomic locus of a mobile genetic element carrying copper resistance genes. This study demonstrates the value of integrating genomic, environmental, and phenotypic data to characterize the biogeography of key microorganisms in contaminated sites.
RESUMEN
OBJECTIVES: To identify predictors of referral and completion of germline genetic testing among newly diagnosed ovarian cancer patients, with a focus on geographic social deprivation, oncologist-level practices, and time between diagnosis and completion of testing. METHODS: Clinical and sociodemographic data were abstracted from medical records of patients newly diagnosed with ovarian cancer between 2014 and 2019 in the University of North Carolina Health System. Factors associated with referral for genetic counseling, completion of germline testing, and time between diagnosis and test results were identified using multivariable regression. RESULTS: 307/459 (67%) patients were referred for genetic counseling and 285/459 (62%) completed testing. The predicted probability of test completion was 0.83 (95% CI: 0.77-0.88) for patients with a referral compared to 0.27 (95% CI: 0.18-0.35) for patients without a referral. The predicted probability of referral was 0.75 (95% CI: 0.69-0.82) for patients at the 25th percentile of ZIP code-level Social Deprivation Index (SDI) and 0.67 (0.60-0.74) for patients at the 75th percentile of SDI. Referral varied by oncologist, with predicted probabilities ranging from 0.47 (95% CI: 0.32-0.62) to 0.93 (95% CI: 0.85-1.00) across oncologists. The median time between diagnosis and test results was 137 days (IQR: 55-248 days). This interval decreased by a predicted 24.46 days per year (95% CI: 37.75-11.16). CONCLUSIONS: We report relatively high germline testing and a promising trend in time from diagnosis to results, with variation by oncologist and patient factors. Automated referral, remote genetic counseling and sample collection, reduced out-of-pocket costs, and educational interventions should be explored.
Asunto(s)
Asesoramiento Genético , Pruebas Genéticas , Mutación de Línea Germinal , Neoplasias Ováricas , Derivación y Consulta , Humanos , Femenino , Derivación y Consulta/estadística & datos numéricos , Neoplasias Ováricas/genética , Neoplasias Ováricas/diagnóstico , Persona de Mediana Edad , Pruebas Genéticas/estadística & datos numéricos , Pruebas Genéticas/métodos , Asesoramiento Genético/estadística & datos numéricos , Adulto , Anciano , North Carolina , Instituciones Oncológicas/estadística & datos numéricos , Estudios RetrospectivosRESUMEN
MAGEA4 is a cancer-testis antigen primarily expressed in the testes but aberrantly overexpressed in several cancers. MAGEA4 interacts with the RING ubiquitin ligase RAD18 and activates trans-lesion DNA synthesis (TLS), potentially favouring tumour evolution. Here, we employed NMR and AlphaFold2 (AF) to elucidate the interaction mode between RAD18 and MAGEA4, and reveal that the RAD6-binding domain (R6BD) of RAD18 occupies a groove in the C-terminal winged-helix subdomain of MAGEA4. We found that MAGEA4 partially displaces RAD6 from the RAD18 R6BD and inhibits degradative RAD18 autoubiquitination, which could be countered by a competing peptide of the RAD18 R6BD. AlphaFold2 and cross-linking mass spectrometry (XL-MS) also revealed an evolutionary invariant intramolecular interaction between the catalytic RING and the DNA-binding SAP domains of RAD18, which is essential for PCNA mono-ubiquitination. Using interaction proteomics, we found that another Type-I MAGE, MAGE-C2, interacts with the RING ubiquitin ligase TRIM28 in a manner similar to the MAGEA4/RAD18 complex, suggesting that the MAGEA4 peptide-binding groove also serves as a ligase-binding cleft in other type-I MAGEs. Our data provide new insights into the mechanism and regulation of RAD18-mediated PCNA mono-ubiquitination.
Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Antígeno Nuclear de Célula en Proliferación/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Péptidos/metabolismo , Daño del ADNRESUMEN
Androgen receptors are expressed in the kidney and serum testosterone is negatively associated with serum phosphate in males, suggesting a role of testosterone in renal phosphate handling. In this cross-sectional study, we examined the association of serum total and free testosterone with acute phosphate and calcium excretion in males in response to an oral phosphate challenge. Thirty-five healthy adult males with normal baseline testosterone levels consumed a 500 mg phosphorus drink and the urinary excretion of minerals, as well as levels of relevant circulating parameters, were assessed at baseline and hourly for 4 h. Serum total testosterone was positively associated with overall phosphate excretion (r = 0.35, p = 0.04) and calcium excretion (r = 0.44, p = 0.00) in response to the challenge. Serum free testosterone was positively associated with post-challenge calcium excretion (r = 0.34, p = 0.048), but significance was not reached for phosphate excretion (r = 0.31, p = 0.07). Serum total and free testosterone were not associated with parathyroid hormone, fibroblast growth factor-23, or vitamin D-key factors implicated in phosphate and calcium regulation. Overall, higher serum total testosterone levels in healthy middle-aged males are associated with a greater capacity to acutely excrete phosphate and calcium after a single oral phosphate challenge, suggesting potential ramifications of testosterone deficiency related to mineral homeostasis.
RESUMEN
The complete genome sequence of the extremely thermophilic bacterium Anaerocellum (f. Caldicellulosiruptor) danielii (DSM:8977) is reported here. A. danielii is a fermentative anaerobe and capable of lignocellulose degradation with potential applications in biomass degradation and production of chemicals and fuels from renewable feedstocks.
RESUMEN
Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses. We found that stochastic assembly processes were critical (>60% on average) in shaping community structure, but their relative importance decreased as stress increased. Dispersal limitation and 'drift' related to random birth and death had negative correlations with stresses, whereas the selection processes leading to dissimilar communities increased with stresses, primarily related to pH, cobalt and molybdenum. Assembly mechanisms also varied greatly among different phylogenetic groups. Our findings highlight the importance of microbial dispersal limitation and environmental heterogeneity in ecosystem restoration and management.
Asunto(s)
Agua Subterránea , Microbiota , Filogenia , Procesos EstocásticosRESUMEN
Electron bifurcation (BF) is an evolutionarily ancient energy coupling mechanism in anaerobes, whose associated enzymatic machinery remains enigmatic. In BF-flavoenzymes, a chemically high-potential electron forms in a thermodynamically favorable fashion by simultaneously dropping the potential of a second electron before its donation to physiological acceptors. The cryo-EM and spectroscopic analyses of the BF-enzyme Fix/EtfABCX from Thermotoga maritima suggest that the BF-site contains a special flavin-adenine dinucleotide and, upon its reduction with NADH, a low-potential electron transfers to ferredoxin and a high-potential electron reduces menaquinone. The transfer of energy from high-energy intermediates must be carefully orchestrated conformationally to avoid equilibration. Herein, anaerobic size exclusion-coupled small-angle X-ray scattering (SEC-SAXS) shows that the Fix/EtfAB heterodimer subcomplex, which houses BF- and electron transfer (ET)-flavins, exists in a conformational equilibrium of compacted and extended states between flavin-binding domains, the abundance of which is impacted by reduction and NAD(H) binding. The conformations identify dynamics associated with the T. maritima enzyme and also recapitulate states identified in static structures of homologous BF-flavoenzymes. Reduction of Fix/EtfABCX's flavins alone is insufficient to elicit domain movements conducive to ET but requires a structural "trigger" induced by NAD(H) binding. Models show that Fix/EtfABCX's superdimer exists in a combination of states with respect to its BF-subcomplexes, suggesting a cooperative mechanism between supermonomers for optimizing catalysis. The correlation of conformational states with pathway steps suggests a structural means with which Fix/EtfABCX may progress through its catalytic cycle. Collectively, these observations provide a structural framework for tracing Fix/EtfABCX's catalysis.
Asunto(s)
Electrones , Thermotoga maritima , NAD/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Transporte de Electrón , Catálisis , Flavinas/metabolismo , Oxidación-ReducciónRESUMEN
The platform chemical 2,3-butanediol (2,3-BDO) is used to derive products, such as 1,3-butadiene and methyl ethyl ketone, for the chemical and fuel production industries. Efficient microbial 2,3-BDO production at industrial scales has not been achieved yet for various reasons, including product inhibition to host organisms, mixed stereospecificity in product formation, and dependence on expensive substrates (i.e., glucose). In this study, we explore engineering of a 2,3-BDO pathway in Caldicellulosiruptor bescii, an extremely thermophilic (optimal growth temperature = 78°C) and anaerobic bacterium that can break down crystalline cellulose and hemicellulose into fermentable C5 and C6 sugars. In addition, C. bescii grows on unpretreated plant biomass, such as switchgrass. Biosynthesis of 2,3-BDO involves three steps: two molecules of pyruvate are condensed into acetolactate; acetolactate is decarboxylated to acetoin, and finally, acetoin is reduced to 2,3-BDO. C. bescii natively produces acetoin; therefore, in order to complete the 2,3-BDO biosynthetic pathway, C. bescii was engineered to produce a secondary alcohol dehydrogenase (sADH) to catalyze the final step. Two previously characterized, thermostable sADH enzymes with high affinity for acetoin, one from a bacterium and one from an archaeon, were tested independently. When either sADH was present in C. bescii, the recombinant strains were able to produce up to 2.5-mM 2,3-BDO from crystalline cellulose and xylan and 0.2-mM 2,3-BDO directly from unpretreated switchgrass. This serves as the basis for higher yields and productivities, and to this end, limiting factors and potential genetic targets for further optimization were assessed using the genome-scale metabolic model of C. bescii.IMPORTANCELignocellulosic plant biomass as the substrate for microbial synthesis of 2,3-butanediol is one of the major keys toward cost-effective bio-based production of this chemical at an industrial scale. However, deconstruction of biomass to release the sugars for microbial growth currently requires expensive thermochemical and enzymatic pretreatments. In this study, the thermo-cellulolytic bacterium Caldicellulosiruptor bescii was successfully engineered to produce 2,3-butanediol from cellulose, xylan, and directly from unpretreated switchgrass. Genome-scale metabolic modeling of C. bescii was applied to adjust carbon and redox fluxes to maximize productivity of 2,3-butanediol, thereby revealing bottlenecks that require genetic modifications.
Asunto(s)
Butileno Glicoles , Caldicellulosiruptor , Lactatos , Ingeniería Metabólica , Xilanos , Biomasa , Acetoína , Composición de Base , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Celulosa/metabolismo , Clostridiales/metabolismo , Bacterias/metabolismo , Plantas/metabolismo , AzúcaresRESUMEN
It is well established that the biomechanical properties of the Stratum Corneum (SC) are influenced by both moisture-induced plasticization and the lipid content. This study employs Atomic Force Microscopy to investigate how hydration affects the surface topographical and elasto-viscoplastic characteristics of corneocytes from two anatomical sites. Volar forearm cells underwent swelling when immersed in water with a 50% increase in thickness and volume. Similarly, medial heel cells demonstrated significant swelling in volume, accompanied by increased cell area and reduced cell roughness. Furthermore, as the water activity was increased, they exhibited enhanced compliance, leading to a decreased Young's modulus, hardness, and relaxation times. Moreover, the swollen cells also displayed a greater tolerance to strain before experiencing permanent deformation. Despite the greater predominance of immature cornified envelopes in plantar skin, the comparable Young's modulus of medial heel and forearm corneocytes suggests that cell stiffness primarily relies on the keratin matrix rather than on the cornified envelope. The Young's moduli of the cells in distilled water are similar to those reported for the SC, which suggests that the corneodesmosomes and intercellular lamellae lipids junctions that connect the corneocytes are able to accommodate the mechanical deformations of the SC.