RESUMEN
Developing new tools to better understand disorders of the nervous system, with a goal to more effectively treat them, is an active area of bioelectronic medicine research. Future tools must be flexible and configurable, given the evolving understanding of both neuromodulation mechanisms and how to configure a system for optimal clinical outcomes. We describe a system, the Summit RC+S "neural coprocessor," that attempts to bring the capability and flexibility of a microprocessor to a prosthesis embedded within the nervous system. This paper describes the updated system architecture for the Summit RC+S system, the five custom integrated circuits required for bi-directional neural interfacing, the supporting firmware/software ecosystem, and the verification and validation activities to prepare for human implantation. Emphasis is placed on design changes motivated by experience with the CE-marked Activa PC+S research tool; specifically, enhancement of sense-stim performance for improved bi-directional communication to the nervous system, implementation of rechargeable technology to extend device longevity, and application of MICS-band telemetry for algorithm development and data management. The technology was validated in a chronic treatment paradigm for canines with naturally occurring epilepsy, including free ambulation in the home environment, which represents a typical use case for future human protocols.
Asunto(s)
Electrodos Implantados , Enfermedades del Sistema Nervioso/fisiopatología , Monitorización Neurofisiológica/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Animales , Perros , Diseño de Equipo , Ergonomía , Humanos , Enfermedades del Sistema Nervioso/terapia , TransductoresRESUMEN
Brain stimulation has emerged as an effective treatment for a wide range of neurological and psychiatric diseases. Parkinson's disease, epilepsy, and essential tremor have FDA indications for electrical brain stimulation using intracranially implanted electrodes. Interfacing implantable brain devices with local and cloud computing resources have the potential to improve electrical stimulation efficacy, disease tracking, and management. Epilepsy, in particular, is a neurological disease that might benefit from the integration of brain implants with off-the-body computing for tracking disease and therapy. Recent clinical trials have demonstrated seizure forecasting, seizure detection, and therapeutic electrical stimulation in patients with drug-resistant focal epilepsy. In this paper, we describe a next-generation epilepsy management system that integrates local handheld and cloud-computing resources wirelessly coupled to an implanted device with embedded payloads (sensors, intracranial EEG telemetry, electrical stimulation, classifiers, and control policy implementation). The handheld device and cloud computing resources can provide a seamless interface between patients and physicians, and realtime intracranial EEG can be used to classify brain state (wake/sleep, preseizure, and seizure), implement control policies for electrical stimulation, and track patient health. This system creates a flexible platform in which low demand analytics requiring fast response times are embedded in the implanted device and more complex algorithms are implemented in offthebody local and distributed cloud computing environments. The system enables tracking and management of epileptic neural networks operating over time scales ranging from milliseconds to months.
RESUMEN
The Home Health Aide (HHA) industry is challenged with low wages, little possibility of career advancement, and high turnover rates. Jewish Home Lifecare, Home Assistance Personnel Inc. (HAPI) is a home care aide agency that has developed a Peer Mentor HHA program. Peer Mentor HHAs mentor newly hired/trained HHAs within our agency. This career path leads to higher paying work that allows for growth of our workforce for the identified growing care need and positively impacts HHA retention.