Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 49(33): 11756-11771, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32803206

RESUMEN

Three bismuth(iii)-organic compounds, [Bi4Cl8(PDC)2(phen)4]·2MeCN (1), [BiCl3(phen)2] (2), and [Bi2Cl6(terpy)2] (3), were prepared from solvothermal reactions of bismuth chloride, 2,6-pyridinedicarboxylic acid (H2PDC), and 1,10-phenanthroline (phen) or 2,2';6',2''-terpyridine (terpy). The structures were determined through single crystal X-ray diffraction and the compounds were further characterized via powder X-ray diffraction, Raman and infrared spectroscopy, and thermogravimetric analysis. The photoluminescence properties of the solid-state materials were assessed using steady state and time-dependent techniques to obtain excitation and emission profiles as well as lifetimes. The compounds exhibit visible emission ranging from the yellow-green to orange region upon UV excitation. Theoretical quantum mechanical calculations aimed at elucidating the observed emissive behavior show that the transitions can be assigned as predominantly ligand-to-ligand and ligand-to-metal charge transfer transitions. The solid-state structural chemistry, spectroscopic properties, and luminescence behavior of the bismuth compounds are presented herein.

2.
Dalton Trans ; 47(38): 13419-13433, 2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30183020

RESUMEN

Three bismuth-2,5-thiophenedicarboxylates (Bi-TDC) and two europium-2,5-thiophenedicarboxylates (Eu-TDC) were synthesized under ambient conditions. The structures were determined through single crystal X-ray diffraction, and three of the phases were further characterized by powder X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis. Reactions of bismuth nitrate, 2,5-thiophenedicarboxylate, and pyridine in an acidic solution of acetic acid and ethanol yield Hpy[Bi(TDC)2(H2O)]·1.5H2O (1), whereas reactions in a water/ethanol mixture produce a minor phase, [Hpy]3[Bi2(TDC)4(HTDC)(H2O)]·xH2O (2) along with a major product, (Hpy)2[Bi(TDC)2(HTDC)]·0.36H2O (3). The structures of 1-3 are all built from anionic Bi-TDC chains that are further bridged through additional TDC linkages into interpenetrated 2D sheets. Addition of an aqueous lanthanide solution to the reaction mixtures that yielded 1 and 2-3 resulted in the formation of doped phases, Hpy[Bi1-xLnx(TDC)2(H2O)]·1.5H2O (Bi1-xLnx-1), where Ln = Nd, Sm, Eu, Tb, Dy, and Yb, and (Hpy)2[Bi0.99Eu0.01 (TDC)2(HTDC)]·0.36H2O (Bi0.99Eu0.01-3). Using europium nitrate rather than the bismuth precursor resulted in the formation of two homometallic europium based phases, [Eu(TDC)(NO3)(H2O)]n (4) and [Eu2(TDC)3(H2O)9]·5H2O (5), which adopt an extended 3D network and an interpenetrated 2D structure, respectively. Photophysical measurements were carried out for 1 and the lanthanide containing phases and quantum yield and lifetime values were determined for the visible light emitters. Herein, the structural chemistry, spectroscopic properties, and luminescence of the bismuth phases, their lanthanide doped analogs, and the europium compounds are presented.

3.
Chemistry ; 24(21): 5630-5636, 2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29359514

RESUMEN

A bismuth-organic compound containing 2,2':6'2"-terpyridine (terpy) and 2-thiophenecarboxylate (TC), of the general formula (terpy)Bi(κ2 -TC)3 ⋅0.47 H2 O (BiOM-1), has been synthesized under hydrothermal conditions. Addition of a lanthanide nitrate solution to the reaction mixture led to statistical replacement of the bismuth centers, and yielded isomorphous lanthanide containing compounds Bi1-x Lnx OM-1 (Ln=Nd, Sm, Eu, Tb, Dy, Er, and Yb) that showed bismuth and/or ligand sensitized lanthanide-centered emission, and the first example of NIR emission from a lanthanide doped BiOM. The structure was determined by single-crystal X-ray diffraction, and the level and uniformity of lanthanide ion incorporation into the bismuth host was determined by ICP-OES and electron microprobe analysis. For the visible emitters, lifetime data and quantum yields are presented. A high efficiency of sensitization was calculated for the europium analog (50.1 %), showing significant improvement over previously reported europium thiophenecarboxylates. These novel materials may provide strategies to address concerns over the long-term sustainability of the rare earth elements, especially relating to optical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...