Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Basic Clin Physiol Pharmacol ; 33(3): 297-303, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33713589

RESUMEN

OBJECTIVES: Lead primarily affects male reproductive functions via hormonal imbalance and morphological damage to the testicular tissue with significant alteration in sperm profile and oxidative markers. Though, different studies have reported that Cocos nucifera L. oil has a wide range of biological effects, this study aimed at investigating the effect of Cocos nucifera L. oil on lead acetate-induced reproductive toxicity in male Wistar rats. METHODS: Twenty (20) sexually matured male Wistar rats (55-65 days) were randomly distributed into four groups (n=5). Group I (negative control)-distilled water orally for 56 days, Group II (positive control)-5 mg/kg bwt lead acetate intraperitoneally (i.p.) for 14 days, Group III-6.7 mL/kg bwt Cocos nucifera L. oil orally for 56 days and Group IV-lead acetate intraperitoneally (i.p.) for 14 days and Cocos nucifera L. oil for orally for 56 days. Rats were sacrificed by diethyl ether, after which the serum, testis and epididymis were collected and used for semen analysis, biochemical and histological analysis. RESULTS: The lead acetate significantly increases (p<0.05) testicular and epididymal malondialdehyde (MDA) levels, while a significant reduction (p<0.05) in sperm parameters, organ weight, testosterone and luteinizing hormone was observed when compared with the negative control. The coadministration of Cocos nucifera oil with lead acetate significantly increases (p<0.05) testosterone, luteinizing hormone, sperm parameters and organ weight, with a significant decrease (p<0.05) in MDA levels compared with positive control. Histological analysis showed that lead acetate distorts testicular cytoarchitecture and germ cell integrity while this was normalized in the cotreated group. CONCLUSIONS: Cocos nucifera oil attenuates the deleterious effects of lead acetate in male Wistar rats, which could be attributed to its polyphenol content and antioxidant properties.


Asunto(s)
Cocos , Testículo , Animales , Cocos/química , Hormona Luteinizante , Masculino , Compuestos Organometálicos , Estrés Oxidativo , Ratas , Ratas Wistar , Espermatozoides , Testosterona
2.
Biopreserv Biobank ; 16(5): 327-336, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30325666

RESUMEN

Maximizing seed longevity is important for genebanks to efficiently manage their accessions, reducing the frequency of costly regeneration cycles and the loss of genetic integrity. Research on rice seeds has shown that subsequent longevity in air-dry storage can be improved by drying seeds, which are metabolically active at harvest (moisture contents above a critical value close to 16.5%), for an initial period at a higher temperature (40°C-60°C) than that currently recommended by the current genebank standards (5°C-20°C). The aim of this study was to test whether similar benefits could be achieved in two legume species-cowpea and soya bean-by drying freshly harvested seeds, from two separate harvests, at 40°C and 35% relative humidity, for up to 8 days before equilibrium drying in a drying room (17°C and 15% relative humidity). Improvements in longevity were observed in three of the four accessions of soya bean, with the greatest improvement generally occurring after the maximum duration (8 days) at the higher temperature. However, of the five accessions of cowpea, only seeds of TVu-9698 and TVu-13209 from the first harvest, and of TVu-13193 from the second harvest, showed an improvement in longevity compared with drying following the standard protocol. A negative effect of high-temperature drying was also observed in one accession of cowpea, TVu-11980, but only in seeds harvested later in the season, 13 weeks after planting. This research not only provides evidence of the potential benefits of drying orthodox seeds at an alternative, higher, temperature instead of at the conventional lower temperature, before long-term storage, but also raises awareness of how genebanks can improve the management of their accessions.


Asunto(s)
Glycine max/genética , Banco de Semillas/normas , Vigna/genética , Desecación , Variación Genética , Germinación , Humedad , Semillas/genética , Semillas/crecimiento & desarrollo , Glycine max/crecimiento & desarrollo , Temperatura , Factores de Tiempo , Vigna/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...