Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Tissue Res ; 393(2): 229-251, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37247032

RESUMEN

One of the most studied class of non-coding RNAs is microRNAs (miRNAs) which regulate more than 60% of human genes. A network of miRNA gene interactions participates in stem cell self-renewal, proliferation, migration, apoptosis, immunomodulation, and differentiation. Human pulp tissue-derived stem cells (PSCs) are an attractive source of dental mesenchymal stem cells (MSCs) which comprise human dental pulp stem cells (hDPSCs) obtained from the dental pulp of permanent teeth and stem cells isolated from exfoliated deciduous teeth (SHEDs) that would be a therapeutic opportunity in stomatognathic system reconstruction and repair of other damaged tissues. The regenerative capacity of hDPSCs and SHEDs is mediated by osteogenic, odontogenic, myogenic, neurogenic, angiogenic differentiation, and immunomodulatory function. Multi-lineage differentiation of PSCs can be induced or inhibited by the interaction of miRNAs with their target genes. Manipulating the expression of functional miRNAs in PSCs by mimicking miRNAs or inhibiting miRNAs emerged as a therapeutic tool in the clinical translation. However, the effectiveness and safety of miRNA-based therapeutics, besides higher stability, biocompatibility, less off-target effects, and immunologic reactions, have received particular attention. This review aimed to comprehensively overview the molecular mechanisms underlying miRNA-modified PSCs as a futuristic therapeutic option in regenerative dentistry.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células Madre , Diferenciación Celular/fisiología , Odontología , Pulpa Dental , Proliferación Celular , Células Cultivadas
2.
Curr Mol Med ; 23(8): 748-761, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35748558

RESUMEN

The clustered regularly interspaced short palindromic repeats system, called CRISPR, as one of the major technological advances, allows geneticists and researchers to perform genome editing. This remarkable technology is quickly eclipsing zinc-finger nucleases (ZFNs) and other editing tools, and its ease of use and accuracy have thus far revolutionized genome editing, from fundamental science projects to medical research and treatment options. This system consists of two key components: a CRISPR-associated (Cas) nuclease, which binds and cuts deoxyribonucleic acid (DNA) and a guide ribonucleic acid (gRNA) sequence, directing the Cas nuclease to its target site. In the research arena, CRISPR has been up to now exploited in various ways alongside gene editing, such as epigenome modifications, genome-wide screening, targeted cancer therapies, and so on. This article reviews the current perceptions of the CRISPR/Cas systems with special attention to studies reflecting on the relationship between the CRISPR/Cas systems and their role in cancer therapy.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Edición Génica , Sistemas CRISPR-Cas/genética
3.
Trends Analyt Chem ; 143: 116342, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34602681

RESUMEN

There have been many efforts to synthesize advanced materials that are capable of real-time specific recognition of a molecular target, and allow the quantification of a variety of biomolecules. Scaffold materials have a porous structure, with a high surface area and their intrinsic nanocavities can accommodate cells and macromolecules. The three-dimensional structure (3D) of scaffolds serves not only as a fibrous structure for cell adhesion and growth in tissue engineering, but can also provide the controlled release of drugs and other molecules for biomedical applications. There has been a limited number of reports on the use of scaffold materials in biomedical sensing applications. This review highlights the potential of scaffold materials in the improvement of sensing platforms and summarizes the progress in the application of novel scaffold-based materials as sensor, and discusses their advantages and limitations. Furthermore, the influence of the scaffold materials on the monitoring of infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and bacterial infections, was reviewed.

4.
J Mol Recognit ; 34(10): e2900, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33949010

RESUMEN

In this study, the rGO-PEI-AgNPs sensor was designed as a new effective platform to sensitive monitoring of deltamethrin in human plasma samples. For this purpose, reduced graphene oxide (rGO)-supported polyethylenimine (PEI) was used as a suitable substrate for dispersion of silver nanoparticles (AgNPs) as amplification and catalytic element. Therefore, a novel interface (rGO-PEI-AgNPs) was prepared by the fully electrochemical method on the surface of glassy carbon electrodes. The engineered nano-sensor showed a wide dynamic range of 10 nM to 1 mM and low limit of quantification (LLOQ) as 10 nM in human plasma sample, which revealed excellent analytical performance for the recognition of deltamethrin with high sensitivity and reproducibility through differential pulse voltammetry and square wave voltammetry techniques. The results confirm that rGO-PEI-AgNPs as a novel biocompatible interface can provide appropriate, reliable, affordable, rapid, and user-friendly diagnostic tools in the detection of deltamethrin in human real samples.


Asunto(s)
Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Nitrilos/análisis , Plaguicidas/análisis , Piretrinas/análisis , Líquidos Corporales/química , Técnicas Electroquímicas/instrumentación , Electrodos , Diseño de Equipo , Grafito/química , Humanos , Cinética , Límite de Detección , Microscopía Electrónica de Rastreo , Nitrilos/sangre , Plaguicidas/sangre , Polietileneimina/química , Piretrinas/sangre , Sensibilidad y Especificidad , Plata/química
5.
Rev Neurosci ; 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32776904

RESUMEN

The nervous system, which consists of a complex network of millions of neurons, is one of the most highly intricate systems in the body. This complex network is responsible for the physiological and cognitive functions of the human body. Following injuries or degenerative diseases, damage to the nervous system is overwhelming because of its complexity and its limited regeneration capacity. However, neural tissue engineering currently has some capacities for repairing nerve deficits and promoting neural regeneration, with more developments in the future. Nevertheless, controlling the guidance of stem cell proliferation and differentiation is a challenging step towards this goal. Nanomaterials have the potential for the guidance of the stem cells towards the neural lineage which can overcome the pitfalls of the classical methods since they provide a unique microenvironment that facilitates cell-matrix and cell-cell interaction, and they can manipulate the cell signaling mechanisms to control stem cells' fate. In this article, the suitable cell sources and microenvironment cues for neuronal tissue engineering were examined. Afterward, the nanomaterials that impact stem cell proliferation and differentiation towards neuronal lineage were reviewed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...