Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 657: 124110, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38604539

RESUMEN

The goal of this investigation is to develop stable ophthalmic nanoformulations containing cannabidiol (CBD) and its analog cannabidiol-valine-hemisuccinate (CBD-VHS) for improved ocular delivery. Two nanoformulations, nanoemulsion (NE) and nanomicelles (NMC), were developed and evaluated for physicochemical characteristics, drug-excipient compatibility, sterilization, thermal analysis, surface morphology, ex-vivo transcorneal permeation, corneal deposition, and stability. The saturation solubility studies revealed that among the surfactants tested, Cremophor EL had the highest solubilizing capacity for CBD (23.3 ± 0.1 mg/mL) and CBD-VHS (11.2 ± 0.2 mg/mL). The globule size for the lead CBD formulations (NE and NMC) ranged between 205 and 270 nm while CBD-VHS-NMC formulation had a particle size of about 78 nm. The sterilized formulations, except for CBD-VHS-NMC at 40 °C, were stable for three months of storage (last time point tested). Release, in terms of CBD, in the in-vitro release/diffusion studies over 18 h, were faster from the CBD-VHS nanomicelles (38 %) compared to that from the CBD nanoemulsion (16 %) and nanomicelles (33 %). Transcorneal permeation studies revealed improvement in CBD permeability and flux with both formulations; however, a greater improvement was observed with the NMC formulation compared to the NE formulation. In conclusion, the nanoformulations prepared could serve as efficient topical ocular drug delivery platforms for CBD and its analog.


Asunto(s)
Administración Oftálmica , Cannabidiol , Córnea , Estabilidad de Medicamentos , Emulsiones , Nanopartículas , Tamaño de la Partícula , Solubilidad , Cannabidiol/administración & dosificación , Cannabidiol/química , Cannabidiol/farmacocinética , Animales , Córnea/metabolismo , Córnea/efectos de los fármacos , Nanopartículas/química , Conejos , Micelas , Valina/análogos & derivados , Valina/química , Valina/administración & dosificación , Valina/farmacocinética , Liberación de Fármacos , Lípidos/química , Excipientes/química , Permeabilidad , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Tensoactivos/química , Soluciones Oftálmicas/administración & dosificación
2.
Int J Pharm ; 655: 124044, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38527563

RESUMEN

In recent years, several techniques were employed to develop a local sustained pulmonary delivery of sildenafil citrate (SC) as an alternative for the intravenous and oral treatment of pulmonary arterial hypertension (PAH). Most of these methods, however, need to be improved due to limitations of scalability, low yield production, low drug loading, and stability issues. In this study, we report the use of hot-melt extrusion (HME) as a scalable process for making Poly (lactic-co-glycolic acid) (PLGA) microparticles with high SC load. The prepared particles were tested in vitro for local drug delivery to the lungs by inhalation. Sodium bicarbonate was included as a porogen in the formulation to make the particles more brittle and to impart favorable aerodynamic properties. Six formulations were prepared with different formulation compositions. Laser diffraction analysis was used to estimate the geometric particle size distribution of the microparticles. In-vitro aerodynamic performance was evaluated by the next-generation cascade impactor (NGI). It was reported in terms of an emitted dose (ED), an emitted fraction (EF%), a respirable fraction (RF%), a fine particle fraction (FPF%), a mass median aerodynamic diameter (MMAD), and geometric standard deviation (GSD). The formulations have also been characterized for surface morphology, entrapment efficiency, drug load, and in-vitro drug release. The results demonstrated that PLGA microparticles have a mean geometric particle size between 6 and 14 µm, entrapment efficiency of 77 to 89 %, and SC load between 17 and 33 % w/w. Fifteen percent of entrapped sildenafil was released over 24 h from the PLGA microparticles, and seventy percent over 7 days. The aerodynamic properties included fine particle fraction ranging between 19 and 33 % and an average mass median aerodynamic diameter of 6-13 µm.


Asunto(s)
Hipertensión Arterial Pulmonar , Humanos , Citrato de Sildenafil , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Tecnología de Extrusión de Fusión en Caliente , Sistemas de Liberación de Medicamentos , Pulmón , Administración por Inhalación , Tamaño de la Partícula
3.
Int J Pharm ; 630: 122423, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36427695

RESUMEN

This study developed, optimized, characterized, and evaluated bioadhesive, hot-melt extruded (HME), extended-release ocular inserts containing ciprofloxacin hydrochloride (CIP-HCL) to improve the therapeutic outcomes of ocular bacterial infections. The inserts were fabricated with FDA-approved biocompatible, biodegradable, and bioadhesive polymers that were tuned in different ratios to achieve a sustained release profile. The results revealed an inverse relationship between the Klucel™ hydroxypropyl cellulose (HPC, 140,000 Da) concentration and drug release and extended-release profile over 24 h. The CIP-HCL-HME inserts presented stable drug content, thermal behavior, surface pH, and release profiles over three months of room-temperature storage and demonstrated adequate mucoadhesive strength. SEM micrographs revealed a smooth surface. Bacterial growth was not observed on the samples during the in vitro release experiment (0.5-24 h), indicating that a minimum inhibitory concentration (MIC) of 90 against Pseudomonas aeruginosa was achieved. Ex vivo transcorneal permeation studies using excised rabbit corneas revealed that the prepared ocular inserts prolonged the transcorneal flux of the drug compared to commercial eye drops and immediate-release inserts and could reduce the administration frequency to once daily. Therefore, the inserts could increase patient compliance and exhibited prolonged antibacterial activity and thus could provide better therapeutic outcomes against ocular bacterial infections.


Asunto(s)
Infecciones Bacterianas , Ciprofloxacina , Animales , Conejos , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos/métodos , Ojo
4.
Eur J Pharm Biopharm ; 177: 211-223, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35835328

RESUMEN

Fixed-dose combinations (FDCs) achieve optimal goals for treatment with minimal side effects, decreased administration of large number of tablets, thus, greater convenience, and improved patient compliance. However, conventional FDCs do not have a guaranteed place in the future of patient-centered drug development because of the difficulty in achieving dose titration of each drug for individualized specific health needs and desired therapeutic outcomes. In the current study, FDCs of two antihypertensive drugs were fabricated with two distinct compartments using fused deposition modeling three-dimensional printing (FDM-3DP). Atorvastatin calcium and Amlodipine besylate loaded filaments were prepared by hot-melt extrusion. Shell-core FDC tablets were designed to have different infills for individualized dosing. Differential scanning calorimetry and powder X-ray diffraction revealed that both drugs were transformed into amorphous forms within the polymeric carriers. The fabricated tablets met the United States Pharmacopeia acceptance criteria for friability, content uniformity, and dissolution testing. The fabricated tablets were stable at room temperature with respect to drug content and thermal behavior over six months. This dynamic dosage form provides flexibility in dose titration and maintains the advantages of FDCs, thus achieving optimal therapeutic outcomes in different healthcare facilities.


Asunto(s)
Impresión Tridimensional , Tecnología Farmacéutica , Rastreo Diferencial de Calorimetría , Liberación de Fármacos , Humanos , Polvos , Comprimidos/química , Tecnología Farmacéutica/métodos
5.
Drug Dev Ind Pharm ; 46(8): 1334-1344, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32598194

RESUMEN

The present investigation focused mainly on the development of aceclofenac (AF) loaded transfersomal gel (AF-TG) to minimize the frequency of oral dosing during the treatment of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. AF-loaded transfersomes (AF-TS) were prepared by using the film hydration method. The effect of drug loading, pH of hydration medium, edge activator (EA) and lipid concentration on the properties of the AF-TS were studied and optimized. Optimized AF-TS converted into AF-TG by the addition of carbopol 934. Morphology and compatibility studies of AF-TS were observed with scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). AT-TG formulation was evaluated further for ex vivo skin permeation studies compared with marketed Hifenac 30 g gel. Optimized AF-TS showed vesicle size, PDI, and zeta potential of 111.1 ± 3.2 nm, 0.19 ± 0.02, and -29.6 ± 1.2 mV, respectively. Entrapment efficiency of 74.1 ± 1.8% with pH 5.8 phosphate buffer as a hydration medium and 17.1 ± 0.9 elasticity at 0.15%w/v EA and 1%w/v lipid concentration were observed. SEM and DSC studies revealed the spherical shape and no incompatibilities in the AF-TS formulation. The permeability of the AF from AF-TG was enhanced by 14-folds with similar rheological properties compared with marketed gel. Overall, TG containing AF was superior to marketed AF gel formulation for enhanced skin delivery. Therefore, TS and TG formulation could be considered as an alternative delivery approach for the enhanced transdermal application of AF.


Asunto(s)
Lípidos , Piel , Administración Cutánea , Diclofenaco/análogos & derivados , Diclofenaco/química , Portadores de Fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...