Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Alzheimers Dis ; 99(s1): S119-S138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250772

RESUMEN

Background: Neuroinflammation and oxidative stress can aggravate the progression of Alzheimer's disease (AD). Centella asiatica has been traditionally consumed for memory and cognition. The triterpenes (asiaticoside, madecassoside, asiatic acid, madecassic acid) have been standardized in the ethanolic extract of Centella asiatica (SECA). The bioactivity of the triterpenes in different solvent polarities of SECA is still unknown. Objective: In this study, the antioxidative and anti-neuroinflammatory effects of SECA and its fractions were explored on lipopolysaccharides (LPS)-induced microglial cells. Methods: HPLC measured the four triterpenes in SECA and its fractions. SECA and its fractions were tested for cytotoxicity on microglial cells using MTT assay. NO, pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß), ROS, and MDA (lipid peroxidation) produced by LPS-induced microglial cells were measured by colorimetric assays and ELISA. Nrf2 and HO-1 protein expressions were measured using western blotting. Results: The SECA and its fractions were non-toxic to BV2 microglial cells at tested concentrations. The levels of NO, TNF-α, IL-6, ROS, and lipid peroxidation in LPS-induced BV2 microglial cells were significantly reduced (p < 0.001) by SECA and its fractions. SECA and some of its fractions can activate the Nrf2/HO-1 signaling pathway by significantly enhancing (p < 0.05) the Nrf2 and HO-1 protein expressions. Conclusions: This study suggests that the inhibitory activity of SECA and its fractions on pro-inflammatory and oxidative stress events may be the result of the activation of antioxidant defense systems. The potential of SECA and its fractions in reducing neuroinflammation and oxidative stress can be further studied as a potential therapeutic strategy for AD.


Asunto(s)
Antioxidantes , Centella , Hemo-Oxigenasa 1 , Proteínas de la Membrana , Microglía , Factor 2 Relacionado con NF-E2 , Extractos Vegetales , Transducción de Señal , Triterpenos , Microglía/efectos de los fármacos , Microglía/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Centella/química , Animales , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología , Ratones , Hemo-Oxigenasa 1/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Estrés Oxidativo/efectos de los fármacos , Línea Celular , Enfermedades Neuroinflamatorias/tratamiento farmacológico
2.
Pharm Nanotechnol ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653639

RESUMEN

BACKGROUND: Centella asiatica (C. asiatica) has long been traditionally used as a memory enhancer. Nanoemulsion of ethanolic extract C. asiatica (NanoSECA) has been developed to improve brain functions. However, the effect of NanoSECA on enhancing memory and cognitive functions remains unexplored. OBJECTIVES: This research aimed to investigate the potential of NanoSECA on cognitive tasks and memory enhancement pathways in a normal adult rat model. METHODS: Thirty male Sprague Dawley rats (7-8 weeks old) were randomly subjected to five groups (n=six per group). Treatment groups were supplemented with NanoSECA and ethanolic extract of C. asiatica (SECA) for 28 days by oral gavages. Different brain sections were isolated, homogenized, and tested for acetylcholinesterase, antioxidants (glutathione and malondialdehyde), and anti-inflammatory agents (nitric oxide, tumour necrosis factor-α, and prostaglandin E2). RESULT: NanoSECA supplementation markedly enhanced the acetylcholine, glutathione levels and reduced a distinct diminution in plasma activities of acetylcholinesterase, malondialdehyde, nitric oxide, prostaglandin E, and tumor necrosis factor-α levels. CONCLUSION: NanoSECA can be used as a memory enhancer through enhanced cholinergic activity, increased antioxidant level, and reduced oxidative stress.

3.
J Alzheimers Dis ; 94(s1): S21-S44, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334592

RESUMEN

BACKGROUND: Centella asiatica (L.) (C. asiatica) is commonly known in South East and South East Asia communities for its nutritional and medicinal benefits. Besides being traditionally used to enhance memory and accelerate wound healing, its phytochemicals have been extensively documented for their neuroprotective, neuroregenerative, and antioxidant properties. OBJECTIVE: The present study aims to investigate the effects of a standardized raw extract of C. asiatica (RECA) on hydrogen peroxide (H2O2)-induced oxidative stress and apoptotic death in neural-like cells derived from mouse embryonic stem (ES) cell line. METHODS: A transgenic mouse ES cell (46C) was differentiated into neural-like cells using 4-/4+ protocol with addition of all-trans retinoic acid. These cells were then exposed to H2O2 for 24 h. The effects of RECA on H2O2-induced neural-like cells were assessed through cell viability, apoptosis, and reactive oxygen species (ROS) assays, as well as neurite length measurement. The gene expression levels of neuronal-specific and antioxidant markers were assessed by RT-qPCR analysis. RESULTS: Pre-treatment with H2O2 for 24 hours, in a dose-dependent manner, damaged neural-like cells as marked by a decrease in cell viability, substantial increase in intracellular ROS accumulation, and increase in apoptotic rate compared to untreated cells. These cells were used to treat with RECA. Treatment with RECA for 48 h remarkably restored cell survival and promoted neurite outgrowth in the H2O2- damaged neurons by increasing cell viability and decreasing ROS activity. RT-qPCR analysis revealed that RECA upregulated the level of antioxidant genes such as thioredoxin-1 (Trx-1) and heme oxygenase-1 (HO-1) of treated cells, as well as the expression level of neuronal-specific markers such as Tuj1 and MAP2 genes, suggesting their contribution in neuritogenic effect. CONCLUSION: Our findings indicate that RECA promotes neuroregenerative effects and exhibits antioxidant properties, suggesting a valuable synergistic activity of its phytochemical constituents, thus, making the extract a promising candidate in preventing or treating oxidative stress-associated Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Centella , Animales , Ratones , Peróxido de Hidrógeno/toxicidad , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Centella/química , Centella/metabolismo , Estrés Oxidativo , Apoptosis , Animales Modificados Genéticamente , Línea Celular , Supervivencia Celular , Células Madre Embrionarias
4.
Artículo en Inglés | MEDLINE | ID: mdl-35295926

RESUMEN

The evidence on the neuroprotective impact of Centella asiatica (C. asiatica) has been greatly documented in recent years. However, a major obstacle that remains to be overcome is the capacity of the active molecules in C. asiatica to cross the blood-brain barrier (BBB). In this study, we explored the possibilities of using a D-optimal mixture design to fabricate nanoemulsion of C. asiatica (NanoSECA) for better brain bioavailability. The parameters for optimization were the percentage of water (10-80% w/v) and virgin coconut oil (VCO) (10-80% w/v). Nanoemulsions were formulated using a high-pressure homogenization approach and were characterized for their physicochemical properties. The optimal VCO-based nanoemulsion (VBN: F2) conditions were found at 80% (w/v) of water and 10% (w/v) of VCO. Subsequently, viability tests were conducted on neuroblastoma (SH-SY5Y) and macrophage (RAW 264.7) cell lines. NanoSECA was distinguished for its antioxidant, acetylcholinesterase (AChE), anti-inflammatory, and parallel artificial membrane permeability assay (PAMPA) activities in vitro. The NanoSECA has a particle size of 127.833 ± 8.280 nm, zeta potential (ZP) of -24.9 ± 0.011 mV, polydispersity index (PDI) of 0.493 ± 4.681, percentage prediction error (PPE) of -12.02%, and pH of 6.0 ± 0.006 and is also stable under different storage conditions. Cell viability was improved in a dose-dependent manner on SH-SY5Y and RAW 264.7 cell lines. In addition, NanoSECA significantly reduced the AChE activity, suppressing the level of proinflammatory mediators and oxidative stress. Moreover, NanoSECA showed high BBB permeation with a high value of experimental permeability to cross the BBB. Thus, NanoSECA could efficiently potentiate the central nervous system (CNS) therapeutic activities through enhanced penetration of BBB. These nano-delivery systems are crucial to unlock the full potential of C. asiatica for treating numerous CNS disorders.

5.
Front Physiol ; 12: 712317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721056

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder that is characterised by the presence of extracellular beta-amyloid fibrillary plaques and intraneuronal neurofibrillary tau tangles in the brain. Recurring failures of drug candidates targeting these pathways have prompted research in AD multifactorial pathogenesis, including the role of neuroinflammation. Triggered by various factors, such as hypoxia, neuroinflammation is strongly linked to AD susceptibility and/or progression to dementia. Chronic hypoxia induces neuroinflammation by activating microglia, the resident immune cells in the brain, along with an increased in reactive oxygen species and pro-inflammatory cytokines, features that are common to many degenerative central nervous system (CNS) disorders. Hence, interests are emerging on therapeutic agents and plant derivatives for AD that target the hypoxia-neuroinflammation pathway. Centella asiatica is one of the natural products reported to show neuroprotective effects in various models of CNS diseases. Here, we review the complex hypoxia-induced neuroinflammation in the pathogenesis of AD and the potential application of Centella asiatica as a therapeutic agent in AD or dementia.

6.
J Tradit Complement Med ; 11(5): 419-426, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34522636

RESUMEN

BACKGROUND AND AIM: Postpartum depression (PPD) is a familiar problem which is associated with about 10-20% of women after child delivery. Fish oil (FO) has a therapeutic potentials to many diseases including mood disorders. However, there is paucity of data on the effects of FO supplementation on PPD rat model. Hence, this study aimed at investigating the potentials of FO in ameliorating depressive-like behaviors in PPD rat by evaluating the involvement of NLRP3-inflammasome. EXPERIMENTAL PROCEDURE: Thirty six virgin adult female rats (n = 6) were randomly divided into six groups; Group 1-3 were normal control (NC), Sham (SHAM) and ovariectomized group (OVX) respectively whereas group 4-6 were PPD rats forced-fed once daily with distilled water (PPD), fish oil (PPD + FO; 9 g/kg) and Fluoxetine (PPD + FLX; 15 mg/kg) respectively from postpartum day 1 and continued for 10 consecutive days. Rats behaviors were evaluated on postpartum day 10 through open field test (OFT) and forced swimming test (FST), followed by biochemical analysis of NLRP3 inflammasome proteins pathway in their brain and determination of neutrophil to lymphocyte ratio (NLR). RESULTS: PPD-induced rats exhibited high immobility and low swimming time in FST with increased inflammatory status; NLR, IL-1ß and NFкB/NLRP3/caspase-1 activity in their hippocampus. However, administration of FO or fluoxetine reversed the aforementioned abnormalities. CONCLUSION: In conclusion, 10 days supplementation with FO ameliorated the depressive-like behaviors in PPD rats by targeting the NFкB/NLRP3/caspase-1/IL-1ß activity. This has shed light on the potential of NLRP3 as a therapeutic target in treatment of PPD in rats.

7.
Brain Sci ; 10(10)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066310

RESUMEN

Pathophysiology of postpartum depression (PPD) has been associated with many factors, such as neuroendocrine, neuroinflammation and neurotransmitter changes. Fish oil (FO) improves PPD both in humans and animals. However, little is known with regards to its pharmacology on a PPD-like rat model. Hence, the current study aimed at investigating the effects of FO on a PPD-like rat model. Female rats were induced with PPD-like symptoms and then randomly divided into six groups (n = 6) for two experimental protocols. Protocol 1 consisted of PPD-like rats (2 mL distilled water), PPD-like + FO (9 g/kg/d) and PPD-like + Fluoxetine (FLX) (15 mg/kg/d) groups of rats, whereas Protocol 2 consisted of PPD-like rats (2 mL distilled water) + PCPA (p-chlorophenylalanine) 150 mg/kg, PPD-like + FO (9 g/kg/d) + PCPA 150 mg/kg and PPD-like + FLX (15 mg/d) + PCPA 150 mg/kg groups of rats, respectively. All treatments were administered orally for 10 days postpartum, except PCPA, which was given intraperitoneally. Prior to euthanasia, the antidepressant-like effect of the FO was evaluated using the forced swimming test (FST) and open field test (OFT) on day 10 postpartum. Biochemical analysis of serotonin, serotonin metabolite and serotonin turnover from their prefrontal cortex and hippocampus were also measured. The results showed that FO decreased immobility time and increased swimming time significantly, but not climbing time in FST. Further, it also decreased serotonin metabolite and turnover significantly in the hippocampus of the PPD-like rats. In contrast, administration with PCPA reversed all the outcomes. The antidepressant-like effects of FO were found to be similar with that of FLX. Thus, it can be concluded that FO exerts its antidepressant-like effects in PPD-like rats through modulation of serotonergic system.

8.
Steroids ; 164: 108735, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32976918

RESUMEN

The fungal transformations of medroxyrogesterone (1) were investigated for the first time using Cunninghamella elegans, Trichothecium roseum, and Mucor plumbeus. The metabolites obtained are as following: 6ß, 20-dihydroxymedroxyprogesterone (2), 12ß-hydroxymedroxyprogesterone (3), 6ß, 11ß-dihydroxymedroxyprogesterone (4), 16ß-hydroxymedroxyprogesterone (5), 11α, 17-dihydroxy-6α-methylpregn-4-ene-3, 20-dione (6), 11-oxo-medroxyprogesterone (7), 6α-methyl-17α-hydroxypregn-1,4-diene-3,20-dione (8), and 6ß-hydroxymedroxyprogesterone (9), 15ß-hydroxymedroxyprogesterone (10), 6α-methyl-17α, 11ß-dihydroxy-5α-pregnan-3, 20-dione (11), 11ß-hydroxymedroxyprogesterone (12), and 11α, 20-dihydroxymedroxyprogesterone (13). Among all the microbial transformed products, the newly isolated biotransformed product 13 showed the most potent activity against proliferation of SH-SY5Y cells. Compounds 12, 5, 6, 9, 11, and 3 (in descending order of activity) also showed some extent of activity against SH-SY5Y tumour cell line. The never been reported biotransformed product, 2, showed the most potent inhibitory activity against acetylcholinesterase. Molecular modelling studies were carried out to understand the observed experimental activities, and also to obtain more information on the binding mode and the interactions between the biotransformed products, and enzyme.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Medroxiprogesterona/farmacología , Animales , Biotransformación , Caenorhabditis elegans/metabolismo , Inhibidores de la Colinesterasa/química , Simulación por Computador , Cunninghamella/metabolismo , Hypocreales/metabolismo , Técnicas In Vitro , Medroxiprogesterona/química , Medroxiprogesterona/farmacocinética , Simulación del Acoplamiento Molecular , Análisis Espectral/métodos
9.
Molecules ; 25(15)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32721993

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease and the most cause of dementia in elderly adults. Acetylcholinesterase (AChE) is an important beneficial target for AD to control cholinergic signaling deficit. Centella asiatica (CA) has proven to be rich with active ingredients for memory enhancement. In the present study, the chemical profiling of three accession extracts of CA namely SECA-K017, SECA-K018, and, SECA-K019 were performed using high-performance liquid chromatography (HPLC). Four biomarker triterpene compounds were detected in all CA accessions. Quantitative analysis reveals that madecassoside was the highest triterpene in all the CA accessions. The biomarker compounds and the ethanolic extracts of three accessions were investigated for their acetylcholinesterase (AChE) inhibitory activity using Ellman's spectrophotometer method. The inhibitory activity of the triterpenes and accession extracts was compared with the standard AChE inhibitor eserine. The results from the in vitro study showed that the triterpene compounds exhibited an AChE inhibitory activity with the half-maximal inhibitory concentration (IC50) values between 15.05 ± 0.05 and 59.13 ± 0.18 µg/mL. Asiatic acid was found to possess strong AChE inhibitory activity followed by madecassic acid. Among the CA accession extracts, SECA-K017 and SECA-K018 demonstrated a moderate AChE inhibitory activity with an IC50 value of 481.5 ± 0.13 and 763.5 ± 0.16 µg/mL, respectively from the in silico docking studies, it is observed that asiatic acid and madecassic acid showed very good interactions with the active sites and fulfilled docking parameters against AChE. The present study suggested that asiatic acid and madecassic acid in the CA accessions could be responsible for the AChE inhibitory action and could be used as markers to guide further studies on CA as potential natural products for the treatment of AD.


Asunto(s)
Centella/química , Inhibidores de la Colinesterasa/farmacología , Triterpenos Pentacíclicos/farmacología , Triterpenos/aislamiento & purificación , Inhibidores de la Colinesterasa/química , Cromatografía Líquida de Alta Presión , Simulación por Computador , Concentración 50 Inhibidora , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Triterpenos Pentacíclicos/aislamiento & purificación , Fisostigmina/farmacología , Extractos Vegetales/química , Triterpenos/química , Triterpenos/farmacología
10.
Bioorg Chem ; 99: 103819, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32325334

RESUMEN

Leishmaniasis has affected a wider part of population around the globe. Most often, the existing regiments to battle against leishmaniasis are inadequate and limited. In our ongoing efforts to develop new leishmanicidal agents, we have synthesized a series of novel and symmetrical bis-Schiff base-disulfide hybrids 1-27. Intermediate disulfide was synthesized from corresponding 2-aminothiol followed by reacting the coupled adduct with various aromatic aldehydes. All these compounds showed outstanding inhibition when compared with standard (Table 1). Out of twenty seven analogues, twenty two analogues i.e. 1-5, 7-13, 17-21, 23-27 analogues showed excellent inhibitory potential with EC50 values ranging from 0.010 ± 0.00 to 0.096 ± 0.01 µM while five compounds i.e. 6, 14-16, and 22 showed good inhibitory potential with EC50 values ranging from 0.10 ± 0.00 to 0.137 ± 0.01 µM when compared with the standard Amphotericin B. Structure-activity relationship has been established while molecular docking studies were performed to pin the binding interaction of active molecules. This study will help to develop new antileishmanial lead compounds.


Asunto(s)
Antiprotozoarios/farmacología , Disulfuros/farmacología , Leishmania/efectos de los fármacos , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Disulfuros/química , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Bases de Schiff/química , Bases de Schiff/farmacología , Relación Estructura-Actividad
11.
Molecules ; 25(4)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079355

RESUMEN

Centella asiatica (C. asiatica) is one of the medicinal plants that has been reported to exert comprehensive neuroprotection in vitro and in vivo. In view of this, the present study was performed to investigate the effect of ethanolic extract of C. asiatica, designated as raw-extract of C. asiatica (RECA) in reducing the acetylcholinesterase (AChE), inflammations, and oxidative stress activities via both in vitro (SH-SY5Y and RAW 264.7 cells) and in vivo (Sprague Dawley rats). Quantitative high-performance liquid chromatography analysis reveals that RECA contains a significantly high proportion of glycosides than the aglycones with madecassoside as the highest component, followed by asiaticoside. Treatment of SH-SY5Y cells with RECA significantly reduced the AChE activity in a concentration-dependent manner with an IC50 value of 31.09 ± 10.07 µg/mL. Furthermore, the anti-inflammatory and antioxidant effects of RECA were evaluated by lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. Our results elucidated that treatment with RECA significantly suppressed the level of pro-inflammatory cytokine/mediators and oxidative stress released in a concentration-dependent manner. Interestingly, these patterns of inhibition were consistent as observed in the LPS-induced neuroinflammation Sprague Dawley rats' model. The highest concentration used in the two models presented the most significant results. Herein, our findings strongly suggest that RECA may offer therapeutic potential for the treatment of Alzheimer's disease through inhibiting the AChE, inflammation, and oxidative stress activities.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inflamación/patología , Estrés Oxidativo/efectos de los fármacos , Triterpenos/farmacología , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Centella , Cromatografía Líquida de Alta Presión , Dinoprostona/metabolismo , Glutatión/metabolismo , Humanos , Ratones , Nitritos/metabolismo , Extractos Vegetales , Células RAW 264.7 , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
Sci Rep ; 9(1): 19757, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31874991

RESUMEN

Mitragyna speciosa Korth (M. speciosa) has been widely used as a recreational product, however, there are growing concerns on the abuse potentials and toxicity of the plant. Several poisoning and fatal cases involving kratom and mitragynine have been reported but the underlying causes remain unclear. The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit underlying cardiac rapidly delayed rectifier potassium current (IKr). Pharmacological blockade of the IKr can cause acquired long QT syndrome, leading to lethal cardiac arrhythmias. This study aims to elucidate the mechanisms of mitragynine-induced inhibition on hERG1a/1b current. Electrophysiology experiments were carried out using Port-a-Patch system. Quantitative RT-PCR, Western blot analysis, immunofluorescence and co-immunoprecipitation methods were used to determine the effects of mitragynine on hERG1a/1b expression and hERG1-cytosolic chaperones interaction. Mitragynine was found to inhibit the IKr current with an IC50 value of 332.70 nM. It causes a significant reduction of the fully-glycosylated (fg) hERG1a protein expression but upregulates both core-glycosylated (cg) expression and hERG1a-Hsp90 complexes, suggesting possible impaired hERG1a trafficking. In conclusion, mitragynine inhibits hERG1a/1b current through direct channel blockade at lower concentration, but at higher concentration, it upregulates the complexation of hERG1a-Hsp90 which may be inhibitory towards channel trafficking.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Complejos Multiproteicos/metabolismo , Alcaloides de Triptamina Secologanina/farmacología , Regulación hacia Arriba/efectos de los fármacos , Células HEK293 , Humanos
13.
Prev Nutr Food Sci ; 24(1): 41-48, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31008095

RESUMEN

Nutritional intervention of fruit juice supplementation is able to maximize exercise performance. Watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] contains high L-citrulline content and consumption of watermelon juice may promote ergogenic effects. The aim of the present study was to investigate the role of 100% flesh watermelon juice and 100% rind watermelon juice supplementation for 14 days on swimming performance in rats. Twenty four male Sprague-Dawley rats were randomly divided into four groups: Cx group of rats supplemented with filtered tap water (negative control), L-cit group of rats supplemented with L-citrulline (positive control), FR group of rats supplemented with 100% flesh watermelon juice, and RR group of rats supplemented with 100% rind watermelon juice. Each group was supplemented for 14 days ad libitum prior to swimming exercise protocol. The rats were performed swimming exercise for 3 days and swimming time until exhaustion was measured. Plasma samples were collected to measure lactate concentration, ammonia concentration, and nitric oxide production. Rats supplemented with 100% flesh watermelon juice demonstrated significantly prolonged of swimming time until exhaustion, reduction of lactate and ammonia concentrations, and increased of nitric oxide production compared to Cx and L-cit groups (P<0.05). These findings postulate that supplementation with 100% flesh watermelon juice improves endurance in swimming performance.

14.
Naunyn Schmiedebergs Arch Pharmacol ; 392(4): 481-496, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30604191

RESUMEN

Mitragynine is a major component isolated from Mitragyna speciosa Korth or kratom, a medicinal plant known for its opiate-like and euphoric properties. Multiple toxicity and fatal cases involving mitragynine or kratom have been reported but the underlying causes remain unclear. P-glycoprotein (P-gp) is a multidrug transporter which modulates the pharmacokinetics of xenobiotics and plays a key role in mediating drug-drug interactions. This study investigated the effects of mitragynine on P-gp transport activity, mRNA, and protein expression in Caco-2 cells using molecular docking, bidirectional assay, RT-qPCR, Western blot analysis, and immunocytochemistry techniques, respectively. Molecular docking simulation revealed that mitragynine interacts with important residues at the nucleotide binding domain (NBD) site of the P-gp structure but not with the residues from the substrate binding site. This was consistent with subsequent experimental work as mitragynine exhibited low permeability across the cell monolayer but inhibited digoxin transport at 10 µM, similar to quinidine. The reduction of P-gp activity in vitro was further contributed by the downregulation of mRNA and protein expression of P-gp. In summary, mitragynine is likely a P-gp inhibitor in vitro but not a substrate. Hence, concurrent administration of mitragynine-containing kratom products with psychoactive drugs which are P-gp substrates may lead to clinically significant toxicity. Further clinical study to prove this point is needed.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Alcaloides de Triptamina Secologanina/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transporte Biológico , Células CACO-2 , Membrana Celular/metabolismo , Digoxina/farmacología , Humanos , Simulación del Acoplamiento Molecular , ARN Mensajero/metabolismo
15.
Biomed Pharmacother ; 109: 853-864, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30551539

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder and the commonest cause of dementia among the aged people. D-galactose (D-gal) is a senescence agent, while aluminium is a known neurotoxin linked to pathogenesis of AD. The combined administration of rats with d-gal and aluminium chloride (AlCl3) is considered to be an easy and a cheap method to obtain an animal model of AD. The plant Centella asiatica (CA) is reported to exert neuroprotective effects both in vitro and in vivo. Therefore, this study explored the protective effects of CA on cognition and brain ultrastructure in d-gal and AlCl3 induced rats. MATERIALS AND METHODS: Rats were exposed to d-gal 60 mg/kg/b.wt/day + AlCl3 200 mg/kg/b.wt/day and CA (200, 400 and 800 mg/kg/b.wt/day) and 1 mg/kg/b.wt/day of donepezil for 70 days. Different cognitive paradigms viz. T maze spontaneous alternation, modified elevated plus maze and novel object recognition test, were used to evaluate full lesions of the hippocampus, spatial learning and memory and non-spatial learning and memory respectively. Nissl's staining was used to determine the survival of hippocampus CA1 pyramidal cells, while transmission electron microscopy was used to check the ultrastructural changes. RESULTS: The results revealed that d-gal and AlCl3 could significantly impair behavior and cognitive functions, besides causing damage to the hippocampal CA1 pyramidal neurons in rats. In addition, it also caused ultrastructural morphological alterations in rat hippocampus. Conversely, co-administration o;f CA, irrespective of the dosage used, alleviated the cognitive impairments and pathological changes in the rats comparable to donepezil. CONCLUSION: In conclusion the results suggest that CA could protect cognitive impairments and morphological alterations caused by d-gal and AlCl3 toxicity in rats. Biochemical and molecular studies are ongoing to elucidate the probable pharmacodynamics of CA.


Asunto(s)
Cloruro de Aluminio/toxicidad , Disfunción Cognitiva/prevención & control , Galactosa/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/ultraestructura , Triterpenos/uso terapéutico , Animales , Centella , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/patología , Relación Dosis-Respuesta a Droga , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales , Ratas , Ratas Wistar , Resultado del Tratamiento , Triterpenos/farmacología
16.
Int J Anal Chem ; 2018: 4798530, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29853897

RESUMEN

Watermelons (Citrullus lanatus) are known to have sufficient amino acid content. In this study, watermelons grown and consumed in Malaysia were investigated for their amino acid content, L-citrulline and L-arginine, by the isocratic RP-HPLC method. Flesh and rind watermelons were juiced, and freeze-dried samples were used for separation and quantification of L-citrulline and L-arginine. Three different mobile phases, 0.7% H3P04, 0.1% H3P04, and 0.7% H3P04 : ACN (90 : 10), were tested on two different columns using Zorbax Eclipse XDB-C18 and Gemini C18 with a flow rate of 0.5 mL/min and a detection wavelength at 195 nm. Efficient separation with reproducible resolution of L-citrulline and L-arginine was achieved using 0.1% H3P04 on the Gemini C18 column. The method was validated and good linearity of L-citrulline and L-arginine was obtained with R2 = 0.9956, y = 0.1664x + 2.4142 and R2 = 0.9912, y = 0.4100x + 3.4850, respectively. L-citrulline content showed the highest concentration in red watermelon of flesh and rind juice extract (43.81 mg/g and 45.02 mg/g), whereas L-arginine concentration was lower than L-citrulline, ranging from 3.39 to 11.14 mg/g. The isocratic RP-HPLC method with 0.1% H3P04 on the Gemini C18 column proved to be efficient for separation and quantification of L-citrulline and L-arginine in watermelons.

17.
Exp Parasitol ; 184: 57-66, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29175017

RESUMEN

In our ongoing work searching for new trypanocidal lead compounds from Malaysian plants, two known piperidine alkaloids (+)-spectaline (1) and iso-6-spectaline (2) were isolated from the leaves of Senna spectabilis (sin. Cassia spectabilis). Analysis of the 1H and 13C NMR spectra showed that 1 and 2 presented analytical and spectroscopic data in full agreement with those published in the literature. All compounds were screened in vitro against Trypanosoma brucei rhodesiense in comparison to the standard drug pentamidine. Compound 1 and 2 inhibited growth of T. b. rhodesiense with an IC50 value of 0.41 ± 0.01 µM and 0.71 ± 0.01 µM, without toxic effect on L6 cells with associated a selectivity index of 134.92 and 123.74, respectively. These data show that piperidine alkaloids constitute a class of natural products that feature a broad spectrum of biological activities, and are potential templates for the development of new trypanocidal drugs. To our knowledge, the compounds are being reported for the first time to have inhibitory effects on T. b. rhodesiense. The ultrastructural alterations in the trypanosome induced by 1 and 2, leading to programmed cell death were characterized using electron microscopy. These alterations include wrinkling of the trypanosome surface, formation of autophagic vacuoles, disorganization of kinetoplast, and swelling of the mitochondria. These findings evidence a possible autophagic cell death.


Asunto(s)
Piperidinas/farmacología , Senna/química , Tripanocidas/farmacología , Trypanosoma brucei rhodesiense/efectos de los fármacos , Animales , Bioensayo , Espectroscopía de Resonancia Magnética con Carbono-13 , Línea Celular , Humanos , Concentración 50 Inhibidora , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mioblastos Esqueléticos/efectos de los fármacos , Piperidinas/aislamiento & purificación , Piperidinas/toxicidad , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Hojas de la Planta/química , Espectroscopía de Protones por Resonancia Magnética , Ratas , Senna/clasificación , Tripanocidas/aislamiento & purificación , Tripanocidas/toxicidad , Trypanosoma brucei rhodesiense/crecimiento & desarrollo , Trypanosoma brucei rhodesiense/ultraestructura
18.
Data Brief ; 14: 584-591, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28879216

RESUMEN

The data presented in this article are related to the research article entitled "The effects of deoxyelephantopin on the cardiac delayed rectifier potassium channel current (IKr) and human ether-a-go-go-related gene (hERG) expression" (Y.F. Teah, M.A. Abduraman, A. Amanah, M.I. Adenan, S.F. Sulaiman, M.L. Tan) [1], which the possible hERG blocking properties of deoxyelephantopin were investigated. This article describes the construction of human embryonic kidney 293 (HEK293) cells overexpressing HERG potassium channel and verification of the presence of hERG mRNA and protein expression in this recombinant cell line.

19.
Food Chem Toxicol ; 107(Pt A): 293-301, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28689918

RESUMEN

Elephantopus scaber Linn and its major bioactive component, deoxyelephantopin are known for their medicinal properties and are often reported to have various cytotoxic and antitumor activities. This plant is widely used as folk medicine for a plethora of indications although its safety profile remains unknown. Human ether-a-go-go-related gene (hERG) encodes the cardiac IKr current which is a determinant of the duration of ventricular action potentials and QT interval. The hERG potassium channel is an important antitarget in cardiotoxicity evaluation. This study investigated the effects of deoxyelephantopin on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells. The hERG tail currents following depolarization pulses were insignificantly affected by deoxyelephantopin in the transfected cell line. Current reduction was less than 40% as compared with baseline at the highest concentration of 50 µM. The results were consistent with the molecular docking simulation and hERG surface protein expression. Interestingly, it does not affect the hERG expression at both transcriptional and translational level at most concentrations, although higher concentration at 10 µM caused protein accumulation. In conclusion, deoxyelephantopin is unlikely a clinically significant hERG channel and Ikr blocker.


Asunto(s)
Asteraceae/química , Canales de Potasio de Tipo Rectificador Tardío/genética , Canales de Potasio Éter-A-Go-Go/genética , Lactonas/farmacología , Miocardio/metabolismo , Extractos Vegetales/farmacología , Potasio/metabolismo , Sesquiterpenos/farmacología , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Células HEK293 , Corazón/efectos de los fármacos , Humanos
20.
Eur J Med Chem ; 126: 1021-1033, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-28012342

RESUMEN

Molecular hybridization yielded phenyl linked oxadiazole-benzohydrazones hybrids 6-35 and were evaluated for their antileishmanial potentials. Compound 10, a 3,4-dihydroxy analog with IC50 value of 0.95 ± 0.01 µM, was found to be the most potent antileishmanial agent (7 times more active) than the standard drug pentamidine (IC50 = 7.02 ± 0.09 µM). The current series 6-35 conceded in the identification of thirteen (13) potent antileishmanial compounds with the IC50 values ranging between 0.95 ± 0.01-78.6 ± 1.78 µM. Molecular docking analysis against pteridine reductase (PTR1) were also performed to probe the mode of action. Selectivity index showed that compounds with higher number of hydroxyl groups have low selectivity index. Theoretical stereochemical assignment was also done for certain derivatives by using density functional calculations.


Asunto(s)
Antiprotozoarios/síntesis química , Antiprotozoarios/farmacología , Hidrazonas/síntesis química , Hidrazonas/farmacología , Leishmania/efectos de los fármacos , Simulación del Acoplamiento Molecular , Oxadiazoles/química , Antiprotozoarios/química , Antiprotozoarios/metabolismo , Técnicas de Química Sintética , Diseño de Fármacos , Hidrazonas/química , Hidrazonas/metabolismo , Leishmania/enzimología , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Conformación Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...