Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(14): 145002, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37862634

RESUMEN

The ability to form monoenergetic electron beams is vital for high-resolution electron spectroscopy and imaging. Such capabilities are commonly achieved using an electron monochromator, which energy filters a dispersed electron beam, thus reducing the electron flux to yield down to meV energy resolution. This reduction in flux hinders the use of monochromators in many applications, such as ultrafast transmission electron microscopes (UTEMs). Here, we develop and demonstrate a mechanism for electron energy monochromation that does not reduce the flux-a lossless monochromator. The mechanism is based on the interaction of free-electron pulses with single-cycle THz near fields, created by nonlinear conversion of an optical laser pulse near the electron beam path inside a UTEM. Our experiment reduces the electron energy spread by a factor of up to 2.9 without compromising the beam flux. Moreover, as the electron-THz interaction takes place over an extended region of many tens of microns in free space, the realized technique is highly robust-granting uniform monochromation over a wide area, larger than the electron beam diameter. We further demonstrate the wide tunability of our method by monochromating the electron beam at multiple primary electron energies from 60 to 200 keV, studying the effect of various electron and THz parameters on its performance. Our findings have direct applications in the fast-growing field of ultrafast electron microscopy, allowing time- and energy-resolved studies of exciton physics, phononic vibrational resonances, charge transport effects, and optical excitations in the mid IR to the far IR.

2.
Nat Commun ; 14(1): 3687, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344473

RESUMEN

Controlling optical fields on the subwavelength scale is at the core of nanophotonics. Laser-driven nanophotonic particle accelerators promise a compact alternative to conventional radiofrequency-based accelerators. Efficient electron acceleration in nanophotonic devices critically depends on achieving nanometer control of the internal optical nearfield. However, these nearfields have so far been inaccessible due to the complexity of the devices and their geometrical constraints, hampering the design of future nanophotonic accelerators. Here we image the field distribution inside a nanophotonic accelerator, for which we developed a technique for frequency-tunable deep-subwavelength resolution of nearfields based on photon-induced nearfield electron-microscopy. Our experiments, complemented by 3D simulations, unveil surprising deviations in two leading nanophotonic accelerator designs, showing complex field distributions related to intricate 3D features in the device and its fabrication tolerances. We envision an extension of our method for full 3D field tomography, which is key for the future design of highly efficient nanophotonic devices.

3.
ACS Nano ; 17(4): 3645-3656, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36736033

RESUMEN

The ultrafast dynamics of charge carriers in solids plays a pivotal role in emerging optoelectronics, photonics, energy harvesting, and quantum technology applications. However, the investigation and direct visualization of such nonequilibrium phenomena remains as a long-standing challenge, owing to the nanometer-femtosecond spatiotemporal scales at which the charge carriers evolve. Here, we propose and demonstrate an interaction mechanism enabling nanoscale imaging of the femtosecond dynamics of charge carriers in solids. This imaging modality, which we name charge dynamics electron microscopy (CDEM), exploits the strong interaction of free-electron pulses with terahertz (THz) near fields produced by the moving charges in an ultrafast scanning transmission electron microscope. The measured free-electron energy at different spatiotemporal coordinates allows us to directly retrieve the THz near-field amplitude and phase, from which we reconstruct movies of the generated charges by comparison to microscopic theory. The CDEM technique thus allows us to investigate previously inaccessible spatiotemporal regimes of charge dynamics in solids, providing insight into the photo-Dember effect and showing oscillations of photogenerated electron-hole distributions inside a semiconductor. Our work facilitates the exploration of a wide range of previously inaccessible charge-transport phenomena in condensed matter using ultrafast electron microscopy.

4.
Science ; 372(6547): 1181-1186, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34112689

RESUMEN

Coherent optical excitations in two-dimensional (2D) materials, 2D polaritons, can generate a plethora of optical phenomena that arise from the extraordinary dispersion relations that do not exist in regular materials. Probing of the dynamical phenomena of 2D polaritons requires simultaneous spatial and temporal imaging capabilities and could reveal unknown coherent optical phenomena in 2D materials. Here, we present a spatiotemporal measurement of 2D wave packet dynamics, from its formation to its decay, using an ultrafast transmission electron microscope driven by femtosecond midinfrared pulses. The ability to coherently excite phonon-polariton wave packets and probe their evolution in a nondestructive manner reveals intriguing dispersion-dependent dynamics that includes splitting of multibranch wave packets and, unexpectedly, wave packet deceleration and acceleration. Having access to the full spatiotemporal dynamics of 2D wave packets can be used to illuminate puzzles in topological polaritons and discover exotic nonlinear optical phenomena in 2D materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA