Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7291, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968277

RESUMEN

Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS. We show that P3F expression in aP2-Cre expressing cells reprograms endothelial progenitors to functional myogenic stem cells capable of regenerating injured muscle fibers. Further, we describe a FP-RMS mouse model driven by P3F expression and Cdkn2a loss in endothelial cells. Additionally, we show that P3F expression in TP53-null human iPSCs blocks endothelial-directed differentiation and guides cells to become myogenic cells that form FP-RMS tumors in immunocompromised mice. Together these findings demonstrate that FP-RMS can originate from aberrant development of non-myogenic cells driven by P3F.


Asunto(s)
Rabdomiosarcoma Alveolar , Rabdomiosarcoma , Animales , Niño , Humanos , Ratones , Línea Celular Tumoral , Células Endoteliales/metabolismo , Proteína Forkhead Box O1/metabolismo , Regulación Neoplásica de la Expresión Génica , Músculo Esquelético/metabolismo , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción Paired Box/genética , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Rabdomiosarcoma Alveolar/genética
2.
Nutrients ; 15(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36678342

RESUMEN

A major polymorphism in the fucosyltransferase2 (FUT2) gene influences risk of multiple gut diseases, but its impact on the microbiome of breastfed infants was unknown. In individuals with an active FUT2 enzyme ("secretors"), the intestinal mucosa is abundantly fucosylated, providing mutualist bacteria with a rich endogenous source of fucose. Non-secretors comprise approximately one-fifth of the population, and they lack the ability to create this enzyme. Similarly, maternal secretor status influences the abundance of a breastfeeding mother's fucosylated milk oligosaccharides. We compared the impact of maternal secretor status, measured by FUT2 genotype, and infant secretor status, measured by FUT2 genotype and phenotype, on early infant fecal microbiome samples collected from 2-month-old exclusively breastfed infants (n = 59). Infant secretor status (19% non-secretor, 25% low-secretor, and 56% full-secretor) was more strongly associated with the infant microbiome than it was with the maternal FUT2 genotype. Alpha diversity was greater in the full-secretors than in the low- or non-secretor infants (p = 0.049). Three distinct microbial enterotypes corresponded to infant secretor phenotype (p = 0.022) and to the dominance of Bifidobacterium breve, B. longum, or neither (p < 0.001). Infant secretor status was also associated with microbial metabolic capacity, specifically, bioenergetics pathways. We concluded that in exclusively breastfed infants, infant­but not maternal­secretor status is associated with infant microbial colonization and metabolic capacity.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Fucosiltransferasas/genética , Genotipo , Leche Humana/metabolismo , Humanos , Femenino , Lactante , Galactósido 2-alfa-L-Fucosiltransferasa
3.
Chem Res Toxicol ; 35(2): 326-336, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35084835

RESUMEN

Protein disulfide isomerases (PDIs) function in forming the correct disulfide bonds in client proteins, thereby aiding the folding of proteins that enter the secretory pathway. Recently, several PDIs have been identified as targets of organic electrophiles, yet the client proteins of specific PDIs remain largely undefined. Here, we report that PDIs expressed in Saccharomyces cerevisiae are targets of divinyl sulfone (DVSF) and other thiol-reactive protein cross-linkers. Using DVSF, we identified the interaction partners that were cross-linked to Pdi1 and Eug1, finding that both proteins form cross-linked complexes with other PDIs, as well as vacuolar hydrolases, proteins involved in cell wall biosynthesis and maintenance, and many ER proteostasis factors involved ER stress signaling and ER-associated protein degradation (ERAD). The latter discovery prompted us to examine the effects of DVSF on ER quality control, where we found that DVSF inhibits the degradation of the ERAD substrate CPY*, in addition to covalently modifying Ire1 and blocking the activation of the unfolded protein response. Our results reveal that DVSF targets many proteins within the ER proteostasis network and suggest that these proteins may be suitable targets for covalent therapeutic development in the future.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Saccharomyces cerevisiae/enzimología , Compuestos de Sulfhidrilo/metabolismo , Reactivos de Enlaces Cruzados/química , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Estructura Molecular , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/química , Proteolisis/efectos de los fármacos , Proteostasis/efectos de los fármacos , Compuestos de Sulfhidrilo/química , Sulfonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA