Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 640, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718499

RESUMEN

The original version of this Article contained errors in the author affiliations. Affiliation 2 incorrectly read 'Department of Neurology, The First Hospital of Jilin University, Changchun 130021 Jilin Province, China.'Affiliation 5 incorrectly read 'Department of Otolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 Shanxi Province, China'Affiliation 9 incorrectly read 'State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.'This has now been corrected in both the PDF and HTML versions of the Article.

2.
Mol Neurobiol ; 56(8): 5470, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30707392

RESUMEN

The original version of this article unfortunately contained a mistake. The email address Dr. Wen-Quan Zou, one of the corresponding authors should be written as "wxz6@case.edu" instead of "wxz@case.edu".

3.
Nat Commun ; 10(1): 247, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651538

RESUMEN

A definitive pre-mortem diagnosis of prion disease depends on brain biopsy for prion detection currently and no validated alternative preclinical diagnostic tests have been reported to date. To determine the feasibility of using skin for preclinical diagnosis, here we report ultrasensitive serial protein misfolding cyclic amplification (sPMCA) and real-time quaking-induced conversion (RT-QuIC) assays of skin samples from hamsters and humanized transgenic mice (Tg40h) at different time points after intracerebral inoculation with 263K and sCJDMM1 prions, respectively. sPMCA detects skin PrPSc as early as 2 weeks post inoculation (wpi) in hamsters and 4 wpi in Tg40h mice; RT-QuIC assay reveals earliest skin prion-seeding activity at 3 wpi in hamsters and 20 wpi in Tg40h mice. Unlike 263K-inoculated animals, mock-inoculated animals show detectable skin/brain PrPSc only after long cohabitation periods with scrapie-infected animals. Our study provides the proof-of-concept evidence that skin prions could be a biomarker for preclinical diagnosis of prion disease.


Asunto(s)
Bioensayo/métodos , Proteínas PrPSc/análisis , Scrapie/diagnóstico , Piel/patología , Animales , Anticuerpos Monoclonales/inmunología , Biomarcadores/análisis , Encéfalo/patología , Modelos Animales de Enfermedad , Estudios de Factibilidad , Femenino , Humanos , Mesocricetus , Ratones , Ratones Transgénicos , Proteínas PrPSc/inmunología , Proteínas PrPSc/patogenicidad , Scrapie/patología
4.
Mol Neurobiol ; 56(8): 5456-5469, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30612334

RESUMEN

Both sporadic variably protease-sensitive prionopathy (VPSPr) and familial Creutzfeldt-Jakob disease linked to the prion protein (PrP) V180I mutation (fCJDV180I) have been found to share a unique pathological prion protein (PrPSc) that lacks the protease-resistant PrPSc glycosylated at residue 181 because two of four PrP glycoforms are apparently not converted into the PrPSc from their cellular PrP (PrPC). To investigate the seeding activity of these unique PrPSc molecules, we conducted in vitro prion conversion experiments using serial protein misfolding cyclic amplification (sPMCA) and real-time quaking-induced conversion (RT-QuIC) assays with different PrPC substrates. We observed that the seeding of PrPSc from VPSPr or fCJDV180I in the sPMCA reaction containing normal human or humanized transgenic (Tg) mouse brain homogenates generated PrPSc molecules that unexpectedly exhibited a dominant diglycosylated PrP isoform along with PrP monoglycosylated at residue 181. The efficiency of PrPSc amplification was significantly higher in non-CJDMM than in non-CJDVV human brain homogenate, whereas it was higher in normal TgVV than in TgMM mouse brain homogenate. PrPC from the mixture of normal TgMM and Tg mouse brain expressing PrPV180I mutation (Tg180) but not TgV180I alone was converted into PrPSc by seeding with the VPSPr or fCJDV180I. The RT-QuIC seeding activity of PrPSc from VPSPr and fCJDV180I was significantly lower than that of sCJD. Our results suggest that the formation of glycoform-selective prions may be associated with an unidentified factor in the affected brain and the glycoform-deficiency of PrPSc does not affect the glycoforms of in vitro newly amplified PrPSc.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/genética , Mutación/genética , Péptido Hidrolasas/metabolismo , Proteínas Priónicas/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Síndrome de Creutzfeldt-Jakob/patología , Glicosilación , Humanos , Ratones Transgénicos , Proteínas Priónicas/metabolismo , Pliegue de Proteína , Especificidad por Sustrato
5.
Oncotarget ; 8(33): 53888-53898, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28903310

RESUMEN

Caveolin-1 is a major component protein of the caveolae-a type of flask shaped, 50-100 nm, nonclathrin-coated, microdomain present in the plasma membrane of most mammalian cells. Caveolin-1 functions as a scaffolding protein to organize and concentrate signaling molecules within the caveolae, which may be associated with its unique physicochemical properties including oligomerization, acquisition of detergent insolubility, and association with cholesterol. Here we demonstrate that caveolin-1 is detected in all brain areas examined and recovered in both detergent-soluble and -insoluble fractions. Surprisingly, the recovered molecules from the two different fractions share a similar molecular size ranging from 200 to 2,000 kDa, indicated by gel filtration. Furthermore, both soluble and insoluble caveolin-1 molecules generate a proteinase K (PK)-resistant C-terminal core fragment upon the PK-treatment, by removing ˜36 amino acids from the N-terminus of the protein. Although it recognizes caveolin-1 from A431 cell lysate, an antibody against the C-terminus of caveolin-1 fails to detect the brain protein by Western blotting, suggesting that the epitope in the brain caveolin-1 is concealed. No significant differences in the physicochemical properties of caveolin-1 between uninfected and prion-infected brains are observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA