Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Sci Rep ; 14(1): 16073, 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992094

RESUMEN

Triple-negative breast cancer (TNBC) is often treated with neoadjuvant systemic therapy (NAST). We investigated if radiomic models based on multiparametric Magnetic Resonance Imaging (MRI) obtained early during NAST predict pathologic complete response (pCR). We included 163 patients with stage I-III TNBC with multiparametric MRI at baseline and after 2 (C2) and 4 cycles of NAST. Seventy-eight patients (48%) had pCR, and 85 (52%) had non-pCR. Thirty-six multivariate models combining radiomic features from dynamic contrast-enhanced MRI and diffusion-weighted imaging had an area under the receiver operating characteristics curve (AUC) > 0.7. The top-performing model combined 35 radiomic features of relative difference between C2 and baseline; had an AUC = 0.905 in the training and AUC = 0.802 in the testing set. There was high inter-reader agreement and very similar AUC values of the pCR prediction models for the 2 readers. Our data supports multiparametric MRI-based radiomic models for early prediction of NAST response in TNBC.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Terapia Neoadyuvante , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Femenino , Terapia Neoadyuvante/métodos , Persona de Mediana Edad , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Adulto , Anciano , Resultado del Tratamiento , Curva ROC , Imagen por Resonancia Magnética/métodos , Radiómica
2.
Radiol Clin North Am ; 62(4): 627-642, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777539

RESUMEN

Hereditary breast cancers are manifested by pathogenic and likely pathogenic genetic mutations. Penetrance expresses the breast cancer risk associated with these genetic mutations. Although BRCA1/2 are the most widely known genetic mutations associated with breast cancer, numerous additional genes demonstrate high and moderate penetrance for breast cancer. This review describes current genetic testing, details the specific high and moderate penetrance genes for breast cancer and reviews the current approach to screening for breast cancer in patients with these genetic mutations.


Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Mutación , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Pruebas Genéticas/métodos , Genes BRCA1 , Proteína BRCA1/genética , Genes BRCA2 , Penetrancia , Proteína BRCA2/genética
3.
Oncotarget ; 15: 238-247, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502947

RESUMEN

A clinical trial was conducted to assess the feasibility of enrolling patients with Stage II or III hormone receptor positive (HR+)/HER2-negative breast cancer to pre-operative dual PD-L1/CTLA-4 checkpoint inhibition administered prior to neoadjuvant chemotherapy (NACT). Eight eligible patients were treated with upfront durvalumab and tremelimumab for two cycles. Patients then received NACT prior to breast surgery. Seven patients had baseline and interval breast ultrasounds after combination immunotherapy and the responses were mixed: 3/7 patients experienced a ≥30% decrease in tumor volume, 3/7 a ≥30% increase, and 1 patient had stable disease. At the time of breast surgery, 1/8 patients had a pathologic complete response (pCR). The trial was stopped early after 3 of 8 patients experienced immunotherapy-related toxicity or suspected disease progression that prompted discontinuation or a delay in the administration of NACT. Two patients experienced grade 3 immune-related adverse events (1 with colitis, 1 with endocrinopathy). Analysis of the tumor microenvironment after combination immunotherapy did not show a significant change in immune cell subsets from baseline. There was limited benefit for dual checkpoint blockade administered prior to NACT in our study of 8 patients with HR+/HER2-negative breast cancer.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Monoclonales , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Resultado del Tratamiento , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Neoadyuvante/efectos adversos , Microambiente Tumoral
4.
JCO Precis Oncol ; 8: e2300124, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484209

RESUMEN

PURPOSE: The PI3K pathway is frequently altered in triple-negative breast cancer (TNBC). Limited cell line and human data suggest that TNBC tumors characterized as mesenchymal (M) and luminal androgen receptor (LAR) subtypes have increased incidence of alterations in the PI3K pathway. The impact of PI3K pathway alterations across TNBC subtypes is poorly understood. METHODS: Pretreatment tumor was evaluated from operable TNBC patients enrolled on a clinical trial of neoadjuvant therapy (NAT; A Robust TNBC Evaluation fraMework to Improve Survival [ClinicalTrials.gov identifier: NCT02276443]). Tumors were characterized into seven TNBC subtypes per Pietenpol criteria (basal-like 1, basal-like 2, immunomodulatory, M, mesenchymal stem-like, LAR, and unstable). Using whole-exome sequencing, RNA sequencing, and immunohistochemistry for PTEN, alterations were identified in 32 genes known to activate the PI3K pathway. Alterations in each subtype were associated with pathologic response to NAT. RESULTS: In evaluated patients (N = 177), there was a significant difference in the incidence of PI3K pathway alterations across TNBC subtypes (P < .01). The highest incidence of alterations was seen in LAR (81%), BL2 (79%), and M (62%) subtypes. The odds ratio for pathologic complete response (pCR) in the presence of PIK3CA mutation, PTEN mutation, and/or PTEN loss was highest in the LAR subtype and lowest in the M subtype, but these findings did not reach statistical significance. Presence of PIK3CA mutation was associated with pCR in the LAR subtype (P = .02). CONCLUSION: PI3K pathway alteration can affect response to NAT in TNBC, and targeted agents may improve outcomes, particularly in patients with M and LAR TNBC.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/genética , Antineoplásicos/uso terapéutico , Fosfatidilinositol 3-Quinasa Clase I/genética
5.
Radiographics ; 44(4): e230113, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38483829

RESUMEN

The nipple-areolar complex (NAC), a unique anatomic structure of the breast, encompasses the terminal intramammary ducts and skin appendages. Several benign and malignant diseases can arise within the NAC. As several conditions have overlapping symptoms and imaging findings, understanding the distinctive nipple anatomy, as well as the clinical and imaging features of each NAC disease process, is essential. A multimodality imaging approach is optimal in the presence or absence of clinical symptoms. The authors review the ductal anatomy and anomalies, including congenital abnormalities and nipple retraction. They then discuss the causes of nipple discharge and highlight best practices for the imaging workup of pathologic nipple discharge, a common condition that can pose a diagnostic challenge and may be the presenting symptom of breast cancer. The imaging modalities used to evaluate and differentiate benign conditions (eg, dermatologic conditions, epidermal inclusion cyst, mammary ductal ectasia, periductal mastitis, and nonpuerperal abscess), benign tumors (eg, papilloma, nipple adenoma, and syringomatous tumor of the nipple), and malignant conditions (eg, breast cancer and Paget disease of the breast) are reviewed. Breast MRI is the current preferred imaging modality used to evaluate for NAC involvement by breast cancer and select suitable candidates for nipple-sparing mastectomy. Different biopsy techniques (US -guided biopsy and stereotactic biopsy) for sampling NAC masses and calcifications are described. This multimodality imaging approach ensures an accurate diagnosis, enabling optimal clinical management and patient outcomes. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.


Asunto(s)
Enfermedades de la Mama , Neoplasias de la Mama , Femenino , Humanos , Enfermedades de la Mama/diagnóstico por imagen , Enfermedades de la Mama/patología , Neoplasias de la Mama/patología , Imagen por Resonancia Magnética , Mastectomía/métodos , Pezones/diagnóstico por imagen , Pezones/patología , Estudios Retrospectivos
6.
Am J Surg Pathol ; 48(6): e43-e64, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38451836

RESUMEN

Breast implant-associated anaplastic large cell lymphoma has been recognized as a distinct entity in the World Health Organization classification of hematolymphoid neoplasms. These neoplasms are causally related to textured implants that were used worldwide until recently. Consequently, there is an increased demand for processing periprosthetic capsules, adding new challenges for surgeons, clinicians, and pathologists. In the literature, the focus has been on breast implant-associated anaplastic large cell lymphoma; however, benign complications related to the placement of breast implants occur in up to 20% to 30% of patients. Imaging studies are helpful in assessing patients with breast implants for evidence of implant rupture, changes in tissues surrounding the implants, or regional lymphadenopathy related to breast implants, but pathologic examination is often required. In this review, we couple our experience with a review of the literature to describe a range of benign lesions associated with breast implants that can be associated with different clinical presentations or pathogenesis and that may require different diagnostic approaches. We illustrate the spectrum of the most common of these benign disorders, highlighting their clinical, imaging, gross, and microscopic features. Finally, we propose a systematic approach for the diagnosis and handling of breast implant specimens in general.


Asunto(s)
Implantación de Mama , Implantes de Mama , Linfoma Anaplásico de Células Grandes , Humanos , Implantes de Mama/efectos adversos , Femenino , Linfoma Anaplásico de Células Grandes/patología , Linfoma Anaplásico de Células Grandes/etiología , Implantación de Mama/efectos adversos , Implantación de Mama/instrumentación , Valor Predictivo de las Pruebas , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Relevancia Clínica
7.
J Magn Reson Imaging ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294179

RESUMEN

BACKGROUND: Assessment of treatment response in triple-negative breast cancer (TNBC) may guide individualized care for improved patient outcomes. Diffusion tensor imaging (DTI) measures tissue anisotropy and could be useful for characterizing changes in the tumors and adjacent fibroglandular tissue (FGT) of TNBC patients undergoing neoadjuvant systemic treatment (NAST). PURPOSE: To evaluate the potential of DTI parameters for prediction of treatment response in TNBC patients undergoing NAST. STUDY TYPE: Prospective. POPULATION: Eighty-six women (average age: 51 ± 11 years) with biopsy-proven clinical stage I-III TNBC who underwent NAST followed by definitive surgery. 47% of patients (40/86) had pathologic complete response (pCR). FIELD STRENGTH/SEQUENCE: 3.0 T/reduced field of view single-shot echo-planar DTI sequence. ASSESSMENT: Three MRI scans were acquired longitudinally (pre-treatment, after 2 cycles of NAST, and after 4 cycles of NAST). Eleven histogram features were extracted from DTI parameter maps of tumors, a peritumoral region (PTR), and FGT in the ipsilateral breast. DTI parameters included apparent diffusion coefficients and relative diffusion anisotropies. pCR status was determined at surgery. STATISTICAL TESTS: Longitudinal changes of DTI features were tested for discrimination of pCR using Mann-Whitney U test and area under the receiver operating characteristic curve (AUC). A P value <0.05 was considered statistically significant. RESULTS: 47% of patients (40/86) had pCR. DTI parameters assessed after 2 and 4 cycles of NAST were significantly different between pCR and non-pCR patients when compared between tumors, PTRs, and FGTs. The median surface/average anisotropy of the PTR, measured after 2 and 4 cycles of NAST, increased in pCR patients and decreased in non-pCR patients (AUC: 0.78; 0.027 ± 0.043 vs. -0.017 ± 0.042 mm2 /s). DATA CONCLUSION: Quantitative DTI features from breast tumors and the peritumoral tissue may be useful for predicting the response to NAST in TNBC. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 4.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38083160

RESUMEN

We trained and validated a deep learning model that can predict the treatment response to neoadjuvant systemic therapy (NAST) for patients with triple negative breast cancer (TNBC). Dynamic contrast enhanced (DCE) MRI and diffusion-weighted imaging (DWI) of the pre-treatment (baseline) and after four cycles (C4) of doxorubicin/cyclophosphamide treatment were used as inputs to the model for prediction of pathologic complete response (pCR). Based on the standard pCR definition that includes disease status in either breast or axilla, the model achieved areas under the receiver operating characteristic curves (AUCs) of 0.96 ± 0.05, 0.78 ± 0.09, 0.88 ± 0.02, and 0.76 ± 0.03, for the training, validation, testing, and prospective testing groups, respectively. For the pCR status of breast only, the retrained model achieved prediction AUCs of 0.97 ± 0.04, 0.82 ± 0.10, 0.86 ± 0.03, and 0.83 ± 0.02, for the training, validation, testing, and prospective testing groups, respectively. Thus, the developed deep learning model is highly promising for predicting the treatment response to NAST of TNBC.Clinical Relevance- Deep learning based on serial and multiparametric MRIs can potentially distinguish TNBC patients with pCR from non-pCR at the early stage of neoadjuvant systemic therapy, potentially enabling more personalized treatment of TNBC patients.


Asunto(s)
Aprendizaje Profundo , Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Terapia Neoadyuvante/métodos , Estudios Prospectivos , Resultado del Tratamiento
9.
Front Oncol ; 13: 1264259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941561

RESUMEN

Early prediction of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) patients could help oncologists select individualized treatment and avoid toxic effects associated with ineffective therapy in patients unlikely to achieve pathologic complete response (pCR). The objective of this study is to evaluate the performance of radiomic features of the peritumoral and tumoral regions from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquired at different time points of NAST for early treatment response prediction in TNBC. This study included 163 Stage I-III patients with TNBC undergoing NAST as part of a prospective clinical trial (NCT02276443). Peritumoral and tumoral regions of interest were segmented on DCE images at baseline (BL) and after two (C2) and four (C4) cycles of NAST. Ten first-order (FO) radiomic features and 300 gray-level-co-occurrence matrix (GLCM) features were calculated. Area under the receiver operating characteristic curve (AUC) and Wilcoxon rank sum test were used to determine the most predictive features. Multivariate logistic regression models were used for performance assessment. Pearson correlation was used to assess intrareader and interreader variability. Seventy-eight patients (48%) had pCR (52 training, 26 testing), and 85 (52%) had non-pCR (57 training, 28 testing). Forty-six radiomic features had AUC at least 0.70, and 13 multivariate models had AUC at least 0.75 for training and testing sets. The Pearson correlation showed significant correlation between readers. In conclusion, Radiomic features from DCE-MRI are useful for differentiating pCR and non-pCR. Similarly, predictive radiomic models based on these features can improve early noninvasive treatment response prediction in TNBC patients undergoing NAST.

10.
Cancers (Basel) ; 15(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37835523

RESUMEN

Accurate tumor segmentation is required for quantitative image analyses, which are increasingly used for evaluation of tumors. We developed a fully automated and high-performance segmentation model of triple-negative breast cancer using a self-configurable deep learning framework and a large set of dynamic contrast-enhanced MRI images acquired serially over the patients' treatment course. Among all models, the top-performing one that was trained with the images across different time points of a treatment course yielded a Dice similarity coefficient of 93% and a sensitivity of 96% on baseline images. The top-performing model also produced accurate tumor size measurements, which is valuable for practical clinical applications.

11.
Radiographics ; 43(10): e230034, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792593

RESUMEN

Triple-negative breast cancer (TNBC) is a heterogeneous and aggressive group of tumors that are defined by the absence of estrogen and progesterone receptors and lack of ERBB2 (formerly HER2 or HER2/neu) overexpression. TNBC accounts for 8%-13% of breast cancers. In addition, it accounts for a higher proportion of breast cancers in younger women compared with those in older women, and it disproportionately affects non-Hispanic Black women. TNBC has high metastatic potential, and the risk of recurrence is highest during the 5 years after it is diagnosed. TNBC exhibits benign morphologic imaging features more frequently than do other breast cancer subtypes. Mammography can be suboptimal for early detection of TNBC owing to factors that include the fast growth of this cancer, increased mammographic density in young women, and lack of the typical features of malignancy at imaging. US is superior to mammography for TNBC detection, but benign-appearing features can lead to misdiagnosis. Breast MRI is the most sensitive modality for TNBC detection. Most cases of TNBC are treated with neoadjuvant chemotherapy, followed by surgery and radiation. MRI is the modality of choice for evaluating the response to neoadjuvant chemotherapy. Survival rates for individuals with TNBC are lower than those for persons with hormone receptor-positive and human epidermal growth factor receptor 2-positive cancers. The 5-year survival rates for patients with localized, regional, and distant disease at diagnosis are 91.3%, 65.8%, and 12.0%, respectively. The early success of immunotherapy has raised hope regarding the development of personalized strategies to treat TNBC. Imaging and tumor biomarkers are likely to play a crucial role in the prediction of TNBC treatment response and TNBC patient survival in the future. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Anciano , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama/patología , Biomarcadores de Tumor , Mamografía , Terapia Neoadyuvante , Genómica
12.
Ther Adv Med Oncol ; 15: 17588359231189422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547448

RESUMEN

Background: Recent advances have been made in targeting the phosphoinositide 3-kinase pathway in breast cancer. Phosphatase and tensin homolog (PTEN) is a key component of that pathway. Objective: To understand the changes in PTEN expression over the course of the disease in patients with triple-negative breast cancer (TNBC) and whether PTEN copy number variation (CNV) by next-generation sequencing (NGS) can serve as an alternative to immunohistochemistry (IHC) to identify PTEN loss. Methods: We compared PTEN expression by IHC between pretreatment tumors and residual tumors in the breast and lymph nodes after neoadjuvant chemotherapy in 96 patients enrolled in a TNBC clinical trial. A correlative analysis between PTEN protein expression and PTEN CNV by NGS was also performed. Results: With a stringent cutoff for PTEN IHC scoring, PTEN expression was discordant between pretreatment and posttreatment primary tumors in 5% of patients (n = 96) and between posttreatment primary tumors and lymph node metastases in 9% (n = 33). A less stringent cutoff yielded similar discordance rates. Intratumoral heterogeneity for PTEN loss was observed in 7% of the patients. Among pretreatment tumors, PTEN copy numbers by whole exome sequencing (n = 72) were significantly higher in the PTEN-positive tumors by IHC compared with the IHC PTEN-loss tumors (p < 0.0001). However, PTEN-positive and PTEN-loss tumors by IHC overlapped in copy numbers: 14 of 60 PTEN-positive samples showed decreased copy numbers in the range of those of the PTEN-loss tumors. Conclusion: Testing various specimens by IHC may generate different PTEN results in a small proportion of patients with TNBC; therefore, the decision of testing one versus multiple specimens in a clinical trial should be defined in the patient inclusion criteria. Although a distinct cutoff by which CNV differentiated PTEN-positive tumors from those with PTEN loss was not identified, higher copy number of PTEN may confer positive PTEN, whereas lower copy number of PTEN would necessitate additional testing by IHC to assess PTEN loss. Trial registration: NCT02276443.

13.
Radiol Imaging Cancer ; 5(4): e230009, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37505106

RESUMEN

Purpose To determine if a radiomics model based on quantitative maps acquired with synthetic MRI (SyMRI) is useful for predicting neoadjuvant systemic therapy (NAST) response in triple-negative breast cancer (TNBC). Materials and Methods In this prospective study, 181 women diagnosed with stage I-III TNBC were scanned with a SyMRI sequence at baseline and at midtreatment (after four cycles of NAST), producing T1, T2, and proton density (PD) maps. Histopathologic analysis at surgery was used to determine pathologic complete response (pCR) or non-pCR status. From three-dimensional tumor contours drawn on the three maps, 310 histogram and textural features were extracted, resulting in 930 features per scan. Radiomic features were compared between pCR and non-pCR groups by using Wilcoxon rank sum test. To build a multivariable predictive model, logistic regression with elastic net regularization and cross-validation was performed for texture feature selection using 119 participants (median age, 52 years [range, 26-77 years]). An independent testing cohort of 62 participants (median age, 48 years [range, 23-74 years]) was used to evaluate and compare the models by area under the receiver operating characteristic curve (AUC). Results Univariable analysis identified 15 T1, 10 T2, and 12 PD radiomic features at midtreatment that predicted pCR with an AUC greater than 0.70 in both the training and testing cohorts. Multivariable radiomics models of maps acquired at midtreatment demonstrated superior performance over those acquired at baseline, achieving AUCs as high as 0.78 and 0.72 in the training and testing cohorts, respectively. Conclusion SyMRI-based radiomic features acquired at midtreatment are potentially useful for identifying early NAST responders in TNBC. Keywords: MR Imaging, Breast, Outcomes Analysis ClinicalTrials.gov registration no. NCT02276443 Supplemental material is available for this article. © RSNA, 2023 See also the commentary by Houser and Rapelyea in this issue.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Persona de Mediana Edad , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Terapia Neoadyuvante/métodos , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Mama
14.
Cancers (Basel) ; 15(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37444385

RESUMEN

High stromal tumor-infiltrating lymphocytes (sTILs) are associated with improved pathologic complete response (pCR) in triple-negative breast cancer (TNBC). We hypothesize that integrating high sTILs and additional clinicopathologic features associated with pCR could enhance our ability to predict the group of patients on whom treatment de-escalation strategies could be tested. In this prospective early-stage TNBC neoadjuvant chemotherapy study, pretreatment biopsies from 408 patients were evaluated for their clinical and demographic features, as well as biomarkers including sTILs, Ki-67, PD-L1 and androgen receptor. Multivariate logistic regression models were developed to generate a computed response score to predict pCR. The pCR rate for the entire cohort was 41%. Recursive partitioning analysis identified ≥20% as the optimal cutoff for sTILs to denote 35% (143/408) of patients as having high sTILs, with a pCR rate of 59%, and 65% (265/408) of patients as having low sTILs, with a pCR rate of 31%. High Ki-67 (cutoff > 35%) was identified as the only predictor of pCR in addition to sTILs in the training set. This finding was verified in the testing set, where the highest computed response score encompassing both high sTILa and high Ki-67 predicted a pCR rate of 65%. Integrating Ki67 and sTIL may refine the selection of early stage TNBC patients for neoadjuvant clinical trials evaluating de-escalation strategies.

15.
PET Clin ; 18(4): 487-501, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37258343

RESUMEN

There is growing interest in application of functional imaging modalities for adjunct breast imaging due to their unique ability to evaluate molecular/pathophysiologic changes, not visible by standard anatomic breast imaging. This has led to increased use of nuclear medicine dedicated breast-specific single photon and coincidence imaging systems for multiple indications, such as supplemental screening, staging of newly diagnosed breast cancer, evaluation of response to neoadjuvant treatment, diagnosis of local disease recurrence in the breast, and problem solving. Studies show that these systems maybe especially useful for specific subsets of patients, not well served by available anatomic breast imaging modalities.


Asunto(s)
Neoplasias de la Mama , Electrones , Humanos , Femenino , Radiofármacos , Recurrencia Local de Neoplasia , Mamografía/métodos , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/terapia
16.
Breast Cancer Res Treat ; 199(3): 457-469, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37061619

RESUMEN

PURPOSE: Neoadjuvant anti-PD-(L)1 therapy improves the pathological complete response (pCR) rate in unselected triple-negative breast cancer (TNBC). Given the potential for long-term morbidity from immune-related adverse events (irAEs), optimizing the risk-benefit ratio for these agents in the curative neoadjuvant setting is important. Suboptimal clinical response to initial neoadjuvant therapy (NAT) is associated with low rates of pCR (2-5%) and may define a patient selection strategy for neoadjuvant immune checkpoint blockade. We conducted a single-arm phase II study of atezolizumab and nab-paclitaxel as the second phase of NAT in patients with doxorubicin and cyclophosphamide (AC)-resistant TNBC (NCT02530489). METHODS: Patients with stage I-III, AC-resistant TNBC, defined as disease progression or a < 80% reduction in tumor volume after 4 cycles of AC, were eligible. Patients received atezolizumab (1200 mg IV, Q3weeks × 4) and nab-paclitaxel (100 mg/m2 IV,Q1 week × 12) as the second phase of NAT before undergoing surgery followed by adjuvant atezolizumab (1200 mg IV, Q3 weeks, × 4). A two-stage Gehan-type design was employed to detect an improvement in pCR/residual cancer burden class I (RCB-I) rate from 5 to 20%. RESULTS: From 2/15/2016 through 1/29/2021, 37 patients with AC-resistant TNBC were enrolled. The pCR/RCB-I rate was 46%. No new safety signals were observed. Seven patients (19%) discontinued atezolizumab due to irAEs. CONCLUSION: This study met its primary endpoint, demonstrating a promising signal of activity in this high-risk population (pCR/RCB-I = 46% vs 5% in historical controls), suggesting that a response-adapted approach to the utilization of neoadjuvant immunotherapy should be considered for further evaluation in a randomized clinical trial.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Antraciclinas/uso terapéutico , Neoplasias de la Mama Triple Negativas/patología , Terapia Neoadyuvante , Neoplasias de la Mama/tratamiento farmacológico , Paclitaxel/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
18.
Cancers (Basel) ; 15(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36831368

RESUMEN

Early assessment of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) is critical for patient care in order to avoid the unnecessary toxicity of an ineffective treatment. We assessed functional tumor volumes (FTVs) from dynamic contrast-enhanced (DCE) MRI after 2 cycles (C2) and 4 cycles (C4) of NAST as predictors of response in TNBC. A group of 100 patients with stage I-III TNBC who underwent DCE MRI at baseline, C2, and C4 were included in this study. Tumors were segmented on DCE images of 1 min and 2.5 min post-injection. FTVs were measured using the optimized percentage enhancement (PE) and signal enhancement ratio (SER) thresholds. The Mann-Whitney test was used to compare the performance of the FTVs at C2 and C4. Of the 100 patients, 49 (49%) had a pathologic complete response (pCR) and 51 (51%) had a non-pCR. The maximum area under the receiving operating characteristic curve (AUC) for predicting the treatment response was 0.84 (p < 0.001) for FTV at C4 followed by FTV at C2 (AUC = 0.82, p < 0.001). The FTV measured at baseline was not able to discriminate pCR from non-pCR. FTVs measured on DCE MRI at C2, as well as at C4, of NAST can potentially predict pCR and non-pCR in TNBC patients.

19.
NPJ Breast Cancer ; 9(1): 2, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627285

RESUMEN

Patient-derived xenograft (PDX) models of breast cancer are an effective discovery platform and tool for preclinical pharmacologic testing and biomarker identification. We established orthotopic PDX models of triple negative breast cancer (TNBC) from the primary breast tumors of patients prior to and following neoadjuvant chemotherapy (NACT) while they were enrolled in the ARTEMIS trial (NCT02276443). Serial biopsies were obtained from patients prior to treatment (pre-NACT), from poorly responsive disease after four cycles of Adriamycin and cyclophosphamide (AC, mid-NACT), and in cases of AC-resistance, after a 3-month course of different experimental therapies and/or additional chemotherapy (post-NACT). Our study cohort includes a total of 269 fine needle aspirates (FNAs) from 217 women, generating a total of 62 PDX models (overall success-rate = 23%). Success of PDX engraftment was generally higher from those cancers that proved to be treatment-resistant, whether poorly responsive to AC as determined by ultrasound measurements mid-NACT (p = 0.063), RCB II/III status after NACT (p = 0.046), or metastatic relapse within 2 years of surgery (p = 0.008). TNBC molecular subtype determined from gene expression microarrays of pre-NACT tumors revealed no significant association with PDX engraftment rate (p = 0.877). Finally, we developed a statistical model predictive of PDX engraftment using percent Ki67 positive cells in the patient's diagnostic biopsy, positive lymph node status at diagnosis, and low volumetric reduction of the patient's tumor following AC treatment. This novel bank of 62 PDX models of TNBC provides a valuable resource for biomarker discovery and preclinical therapeutic trials aimed at improving neoadjuvant response rates for patients with TNBC.

20.
Sci Rep ; 13(1): 1171, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670144

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Neoadjuvant systemic therapy (NAST) followed by surgery are currently standard of care for TNBC with 50-60% of patients achieving pathologic complete response (pCR). We investigated ability of deep learning (DL) on dynamic contrast enhanced (DCE) MRI and diffusion weighted imaging acquired early during NAST to predict TNBC patients' pCR status in the breast. During the development phase using the images of 130 TNBC patients, the DL model achieved areas under the receiver operating characteristic curves (AUCs) of 0.97 ± 0.04 and 0.82 ± 0.10 for the training and the validation, respectively. The model achieved an AUC of 0.86 ± 0.03 when evaluated in the independent testing group of 32 patients. In an additional prospective blinded testing group of 48 patients, the model achieved an AUC of 0.83 ± 0.02. These results demonstrated that DL based on multiparametric MRI can potentially differentiate TNBC patients with pCR or non-pCR in the breast early during NAST.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama/patología , Terapia Neoadyuvante/métodos , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...