Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ecol Resour ; 24(5): e13969, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38747336

RESUMEN

A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.


Asunto(s)
Variación Genética , Polimorfismo de Nucleótido Simple , Pájaros Cantores , Animales , Pájaros Cantores/genética , Pájaros Cantores/clasificación , Genética de Población/métodos , Europa (Continente) , Passeriformes/genética , Passeriformes/clasificación , Haplotipos/genética , Recombinación Genética , Selección Genética
2.
Evol Lett ; 8(1): 29-42, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370542

RESUMEN

Short-term adaptive evolution represents one of the primary mechanisms allowing species to persist in the face of global change. Predicting the adaptive response at the species level requires reliable estimates of the evolutionary potential of traits involved in adaptive responses, as well as understanding how evolutionary potential varies across a species' range. Theory suggests that spatial variation in the fitness landscape due to environmental variation will directly impact the evolutionary potential of traits. However, empirical evidence on the link between environmental variation and evolutionary potential across a species range in the wild is lacking. In this study, we estimate multivariate evolutionary potential (via the genetic variance-covariance matrix, or G-matrix) for six morphological and life history traits in 10 wild populations of great tits (Parus major) distributed across Europe. The G-matrix significantly varies in size, shape, and orientation across populations for both types of traits. For life history traits, the differences in G-matrix are larger when populations are more distant in their climatic niche. This suggests that local climates contribute to shaping the evolutionary potential of phenotypic traits that are strongly related to fitness. However, we found no difference in the overall evolutionary potential (i.e., G-matrix size) between populations closer to the core or the edge of the distribution area. This large-scale comparison of G-matrices across wild populations emphasizes that integrating variation in multivariate evolutionary potential is important to understand and predict species' adaptive responses to new selective pressures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...