Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 124(26): 5465-5475, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32497430

RESUMEN

We report on the effect of the substrate on electrochemical deposition of Cu from deep eutectic solvent ethaline. We investigated the polarization behavior during electrodeposition of Cu on Pt and glassy carbon (GC) from both Cu2+ and Cu+ containing ethaline using cyclic voltammetry (CV). Formation of bulk Cu deposits on both substrates underwent nucleation and growth processes; however, the nucleation was considerably sluggish on GC compared to Pt. While experiments in Cu+ solutions indicated that coalescence of Cu islands on Pt is a slow process and that its surface may not be fully covered by Cu, such determination of Cu coverage could not be made on GC. Cu dissolution is also slower from GC than from Pt. It was observed that CV of Cu deposition on GC is influenced by the surface preparation method. Since ethaline has high chloride concentration, a parallel study in aqueous 3 M NaCl solution was conducted in order to examine the influence of the chloride medium on the electrodeposition process. This revealed that electrodeposition in both media occurred in the same manner but with different charge and mass transfer rates caused by the differences in viscosity and chloride concentrations of the two solutions.

2.
Nanoscale ; 11(42): 20301-20306, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31633704

RESUMEN

Rational designing of catalysts to promote the sluggish kinetics of the cathode oxygen reduction reaction in proton exchange membrane fuel cells is still challenging, yet of crucial importance to its commercial application. In this work, on the basis of theoretical DFT calculations which suggest that order structured fct-phased PtFe (O-PtFe) with an atomic Pt shell exhibits superior electrocatalytic performance towards the ORR, the desired structure was prepared by using a scalable impregnation-reduction method. The as-prepared O-PtFe delivered enhanced activity (0.68 A mg-1Pt) and stability (73% activity retention after 10 000 potential cycles) compared with the corresponding disordered PtFe alloy (D-PtFe) and Pt. To confirm the excellent durability, in situ X-ray absorption fine structure spectroscopy was conducted to probe the local and electronic structure changes of O-PtFe during 10 000 cycle accelerated durability testing. We hope that this facile synthesis method and the in situ XAFS experiment could be readily adapted to other catalyst systems, facilitating the screening of highly efficient ORR catalysts for fuel cell application.

3.
J Am Chem Soc ; 141(24): 9629-9636, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31129960

RESUMEN

Understanding the roles of metals and atomic structures in activating various elementary steps of electrocatalytic reactions can help rational design of binary or ternary catalysts for promoting activity toward desirable products via favorable pathways. Here we report on a newly developed ternary Au@PtIr core-shell catalyst for ethanol oxidation reaction (EOR) in alkaline solutions, which exhibits an activity enhancement of 6 orders of magnitude compared to AuPtIr alloy catalysts. Analysis of in situ infrared reflection absorption spectra for Au@PtIr and its bimetallic subsets, Au@Pt and PtIr alloy, found that monatomic steps and Au-induced tensile strain on PtIr facilitate C-C bond splitting via ethanol dissociative adsorption and Ir promotes dehydrogenation at low potentials. As evidenced by the CO band being observed only for the PtIr alloy that is rather inactive for ethanol dissociative adsorption, we propose that splitting the C-C bond at the earliest stage of EOR activates a direct 12-electron full oxidation pathway because hydrogen-rich fragments can be fully oxidized without CO as a poisoning intermediate. The resulting synergy of complementary effects of Au core and surface Ir leads to an outstanding performance of Au@PtIr for EOR as characterized by a low onset potential of 0.3 V and 8.3 A mg-1all-metals peak current with 57% currents generated via full ethanol oxidation.

4.
Top Curr Chem (Cham) ; 377(3): 11, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30949779

RESUMEN

Despite its attractive features as a power source for direct alcohol fuel cells, utilization of ethanol is still hampered by both fundamental and technical challenges. The rationale behind the slow and incomplete ethanol oxidation reaction (EOR) with low selectivity towards CO2 on most Pt-based catalysts is still far from being understood, and a number of practical problems need to be addressed before an efficient and low-cost catalyst is designed. Some recent achievements towards solving these problems are presented. Pt film electrodes and Pt monolayer (PtML) electrodes on various single crystal substrates showed that EOR follows the partial oxidation pathway without C-C bond cleavage, with acetic acid and acetaldehyde as the final products. The role of the substrate lattice on the catalytic properties of PtML was proven by the choice of appropriate M(111) structure (M = Pd, Ir, Rh, Ru and Au) showing enhanced kinetics when PtML is under tensile strain on Au(111) electrode. Nanostructured electrocatalysts containing Pt-Rh solid solution on SnO2 and Pt monolayer on non-noble metals are shown, optimized, and characterized by in situ methods. Electrochemical, in situ Fourier transform infrared (FTIR) and X-ray absorption spectroscopy (XAS) techniques highlighted the effect of Rh in facilitating C-C bond splitting in the ternary PtRh/SnO2 catalyst. In situ FTIR proved quantitatively the enhancement in the total oxidation pathway to CO2, and in situ XAS confirmed that Pt and Rh form a solid solution that remains in metallic form through a wide range of potentials due to the presence of SnO2. Combination of these findings with density functional theory calculations revealed the EOR reaction pathway and the role of each constituent of the ternary PtRh/SnO2 catalyst. The optimal Pt:Rh:Sn atomic ratio was found by the two in situ techniques. Attempts to replace Rh with cost-effective alternatives for commercially viable catalysts has shown that Ir can also split the C-C bond in ethanol, but the performance of optimized Pt-Rh-SnO2 is still higher than that of the Pt-Ir-SnO2 catalyst.


Asunto(s)
Técnicas Electroquímicas , Etanol/química , Platino (Metal)/química , Acetaldehído/síntesis química , Acetaldehído/química , Ácido Acético/síntesis química , Ácido Acético/química , Catálisis , Oxidación-Reducción
5.
Angew Chem Int Ed Engl ; 58(8): 2321-2325, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30548557

RESUMEN

NH3 synthesis by the electrocatalytic N2 reduction reaction (NRR) under ambient conditions is an appealing alternative to the currently employed industrial method-the Haber-Bosch process-that requires high temperature and pressure. We report single Mo atoms anchored to nitrogen-doped porous carbon as a cost-effective catalyst for the NRR. Benefiting from the optimally high density of active sites and hierarchically porous carbon frameworks, this catalyst achieves a high NH3 yield rate (34.0±3.6 µg NH 3 h-1 mgcat. -1 ) and a high Faradaic efficiency (14.6±1.6 %) in 0.1 m KOH at room temperature. These values are considerably higher compared to previously reported non-precious-metal electrocatalysts. Moreover, this catalyst displays no obvious current drop during a 50 000 s NRR, and high activity and durability are achieved in 0.1 m HCl. The findings provide a promising lead for the design of efficient and robust single-atom non-precious-metal catalysts for the electrocatalytic NRR.

6.
Angew Chem Int Ed Engl ; 57(11): 2963-2966, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29266640

RESUMEN

The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pdx Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pdx Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mgPt-1 and 2.53 mA cm-2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts.

7.
Ultrason Sonochem ; 41: 427-434, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29137771

RESUMEN

Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. Herein, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show that carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ±â€¯0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ±â€¯1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ±â€¯1 nm) were produced with wide particle size distribution. The metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.

8.
J Am Chem Soc ; 139(21): 7310-7317, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28493691

RESUMEN

Four-electron oxygen reduction reaction (4e-ORR), a key pathway in energy conversion, is preferred over the two-electron reduction pathway that falls short in dissociating dioxygen molecules. Gold surfaces exhibit high sensitivity of the ORR pathway to its atomic structures. A long-standing puzzle remains unsolved: why the Au surfaces with {100} sub-facets were exceptionally capable to catalyze the 4e-ORR in alkaline solution, though limited within a narrow potential window. Herein we report the discovery of a dominant 4e-ORR over the whole potential range on {310} surface of Au nanocrystal shaped as truncated ditetragonal prism (TDP). In contrast, ORR pathways on single-crystalline facets of shaped nanoparticles, including {111} on nano-octahedra and {100} on nanocubes, are similar to their single-crystal counterparts. Combining our experimental results with density functional theory calculations, we elucidate the key role of surface proton transfers from co-adsorbed H2O molecules in activating the facet- and potential-dependent 4e-ORR on Au in alkaline solutions. These results elucidate how surface atomic structures determine the reaction pathways via bond scission and formation among weakly adsorbed water and reaction intermediates. The new insight helps in developing facet-specific nanocatalysts for various reactions.

9.
Chem Commun (Camb) ; 53(10): 1660-1663, 2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-28098274

RESUMEN

We present a new Janus structured catalyst consisting of Pt nanoparticles on Fe-N-C nanoparticles encapsulated by graphene layers for the ORR. The ORR activity of the catalyst increases under potential cycling as the unique Janus nanostructure is further bonded due to a synergetic effect. The present study describes an important advanced approach for the future design of efficient, stable, and low-cost Pt-based electrocatalytic systems.

10.
ChemSusChem ; 10(1): 68-73, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27873467

RESUMEN

We report the synthesis and characterization of graphenesupported cobalt-manganese-oxynitride nanocatalysts (CoMnON/G) as bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A nitriding treatment of spinel compound CoMnO increased the ORR activity considerably, and the most active material catalyzed the ORR with only a 30 mV half-wave potential difference from the commercial carbon-supported platinum (Pt/C) in alkaline media. In addition to high activity, the catalyst also exhibited an intrinsic stability that outperformed Pt/C. An appropriately designed nitridation thus facilitates new directions for developing active and durable non-precious-metal oxynitride electocatalysts.


Asunto(s)
Cobalto/química , Grafito/química , Manganeso/química , Nanoestructuras/química , Nitrógeno/química , Catálisis , Electroquímica , Modelos Moleculares , Conformación Molecular
11.
J Am Chem Soc ; 138(29): 9294-300, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27362731

RESUMEN

We describe a new class of core-shell nanoparticle catalysts having edges and vertexes covered by refractory metal oxide that preferentially segregates onto these catalyst sites. The monolayer shell is deposited on the oxide-free core atoms. The oxide on edges and vertexes induces high catalyst stability and activity. The catalyst and synthesis are exemplified by fabrication of Au nanoparticles doped by Ti atoms that segregate as oxide onto low-coordination sites of edges and vertexes. Pt monolayer shell deposited on Au sites has the mass and specific activities for the oxygen reduction reaction about 13 and 5 times higher than those of commercial Pt/C catalysts. The durability tests show no activity loss after 10 000 potential cycles from 0.6 to 1.0 V. The superior activity and durability of the Ti-Au@Pt catalyst originate from protective titanium oxide located at the most dissolution-prone edge and vertex sites and Au-supported active and stable Pt shell.

12.
J Am Chem Soc ; 138(5): 1575-83, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26796872

RESUMEN

The main challenges to the commercial viability of polymer electrolyte membrane fuel cells are (i) the high cost associated with using large amounts of Pt in fuel cell cathodes to compensate for the sluggish kinetics of the oxygen reduction reaction, (ii) catalyst degradation, and (iii) carbon-support corrosion. To address these obstacles, our group has focused on robust, carbon-free transition metal nitride materials with low Pt content that exhibit tunable physical and catalytic properties. Here, we report on the high performance of a novel catalyst with low Pt content, prepared by placing several layers of Pt atoms on nanoparticles of titanium nickel binary nitride. For the ORR, the catalyst exhibited a more than 400% and 200% increase in mass activity and specific activity, respectively, compared with the commercial Pt/C catalyst. It also showed excellent stability/durability, experiencing only a slight performance loss after 10,000 potential cycles, while TEM results showed its structure had remained intact. The catalyst's outstanding performance may have resulted from the ultrahigh dispersion of Pt (several atomic layers coated on the nitride nanoparticles), and the excellent stability/durability may have been due to the good stability of nitride and synergetic effects between ultrathin Pt layer and the robust TiNiN support.

13.
ACS Appl Mater Interfaces ; 7(47): 26145-57, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26580482

RESUMEN

Developing novel electrocatalysts for small molecule oxidation processes, including formic acid oxidation (FAOR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR), denoting the key anodic reactions for their respective fuel cell configurations, is a significant and relevant theme of recent efforts in the field. Herein, in this report, we demonstrated a concerted effort to couple and combine the benefits of small size, anisotropic morphology, and tunable chemical composition in order to devise a novel "family" of functional architectures. In particular, we have fabricated not only ultrathin 1-D Pd(1-x)Cu(x) alloys but also Pt-coated Pd(1-x)Cu(x) (i.e., Pt∼Pd(1-x)Cu(x); herein the ∼ indicates an intimate association, but not necessarily actual bond formation, between the inner bimetallic core and the Pt outer shell) core-shell hierarchical nanostructures with readily tunable chemical compositions by utilizing a facile, surfactant-based, wet chemical synthesis coupled with a Cu underpotential deposition technique. Our main finding is that our series of as-prepared nanowires are functionally flexible. More precisely, we demonstrate that various examples within this "family" of structural motifs can be tailored for exceptional activity with all 3 of these important electrocatalytic reactions. In particular, we note that our series of Pd(1-x)Cu(x) nanowires all exhibit enhanced FAOR activities as compared with not only analogous Pd ultrathin nanowires but also commercial Pt and Pd standards, with Pd9Cu representing the "optimal" composition. Moreover, our group of Pt∼Pd(1-x)Cu(x) nanowires consistently outperformed not only commercial Pt NPs but also ultrathin Pt nanowires by several fold orders of magnitude for both the MOR and EOR reactions in alkaline media. The variation of the MOR and EOR performance with the chemical composition of our ultrathin Pt∼Pd(1-x)Cu(x) nanowires was also discussed.

14.
J Am Chem Soc ; 137(39): 12597-609, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26402364

RESUMEN

To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (∼2 nm) core-shell Pt∼Pd9Au nanowires, which have been previously shown to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu∼Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Hence, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.

15.
Inorg Chem ; 54(5): 2128-36, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25664974

RESUMEN

Monometallic (δ-MoN, Mo5N6, and Mo2N) and bimetallic molybdenum nitrides (Co0.6Mo1.4N2) were investigated as electrocatalysts for the oxygen reduction reaction (ORR), which is a key half-reaction in hydrogen fuel cells. Monometallic hexagonal molybdenum nitrides are found to exhibit improved activities over rock salt type molybdenum nitride (γ-Mo2N), suggesting that improvements are due to either the higher molybdenum valence or a more favorable coordination environment in the hexagonal structures. Further enhancements in activity were found for hexagonal bimetallic cobalt molybdenum nitride (Co0.6Mo1.4N2), resulting in a modest onset potential of 0.713 V versus reversible hydrogen electrode (RHE). Co0.6Mo1.4N2 exhibits good stability in acidic environments, and in the potential range lower than 0.5 V versus RHE, the ORR appears to proceed via a four-electron mechanism based on the analysis of rotating disc electrode results. A redetermination of the structures of the binary molybdenum nitrides was carried out using neutron diffraction data, which is far more sensitive to nitrogen site positions than X-ray diffraction data. The revised monometallic hexagonal nitride structures all share many common features with the Co0.6Mo1.4N2 structure, which has alternating layers of cations in octahedral and trigonal prismatic coordination, and are thus not limited to only trigonal prismatic Mo environments (as was originally postulated for δ-MoN).

16.
Nat Commun ; 5: 5185, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25373826

RESUMEN

Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here we report on a structurally ordered Au10Pd40Co50 catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that, at elevated temperatures, palladium cobalt nanoparticles undergo an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets via addition of gold atoms. The superior stability of this catalyst compared with platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matter.

17.
J Am Chem Soc ; 135(51): 19186-92, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24175858

RESUMEN

A two-step solid-state reaction for preparing cobalt molybdenum nitride with a nanoscale morphology has been used to produce a highly active and stable electrocatalyst for the hydrogen evolution reaction (HER) under acidic conditions that achieves an iR-corrected current density of 10 mA cm(-2) at -0.20 V vs RHE at low catalyst loadings of 0.24 mg/cm(2) in rotating disk experiments under a H2 atmosphere. Neutron powder diffraction and pair distribution function (PDF) studies have been used to overcome the insensitivity of X-ray diffraction data to different transition-metal nitride structural polytypes and show that this cobalt molybdenum nitride crystallizes in space group P63/mmc with lattice parameters of a = 2.85176(2) Å and c = 10.9862(3) Å and a formula of Co0.6Mo1.4N2. This space group results from the four-layered stacking sequence of a mixed close-packed structure with alternating layers of transition metals in octahedral and trigonal prismatic coordination and is a structure type for which HER activity has not previously been reported. Based on the accurate bond distances obtained from time-of-flight neutron diffraction data, it is determined that the octahedral sites contain a mixture of divalent Co and trivalent Mo, while the trigonal prismatic sites contain Mo in a higher oxidation state. X-ray photoelectron spectroscopy (XPS) studies confirm that at the sample surface nitrogen is present and N-H moieties are abundant.

19.
Nat Commun ; 4: 2466, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24045405

RESUMEN

Fabricating subnanometre-thick core-shell nanocatalysts is effective for obtaining high surface area of an active metal with tunable properties. The key to fully realize the potential of this approach is a reliable synthesis method to produce atomically ordered core-shell nanoparticles. Here we report new insights on eliminating lattice defects in core-shell syntheses and opportunities opened for achieving superior catalytic performance. Ordered structural transition from ruthenium hcp to platinum fcc stacking sequence at the core-shell interface is achieved via a green synthesis method, and is verified by X-ray diffraction and electron microscopic techniques coupled with density functional theory calculations. The single crystalline Ru cores with well-defined Pt bilayer shells resolve the dilemma in using a dissolution-prone metal, such as ruthenium, for alleviating the deactivating effect of carbon monoxide, opening the door for commercialization of low-temperature fuel cells that can use inexpensive reformates (H2 with CO impurity) as the fuel.

20.
Sci Rep ; 3: 2715, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24056308

RESUMEN

The high cost of the platinum-based cathode catalysts for the oxygen reduction reaction (ORR) has impeded the widespread application of polymer electrolyte fuel cells. We report on a new family of non-precious metal catalysts based on ordered mesoporous porphyrinic carbons (M-OMPC; M = Fe, Co, or FeCo) with high surface areas and tunable pore structures, which were prepared by nanocasting mesoporous silica templates with metalloporphyrin precursors. The FeCo-OMPC catalyst exhibited an excellent ORR activity in an acidic medium, higher than other non-precious metal catalysts. It showed higher kinetic current at 0.9 V than Pt/C catalysts, as well as superior long-term durability and MeOH-tolerance. Density functional theory calculations in combination with extended X-ray absorption fine structure analysis revealed a weakening of the interaction between oxygen atom and FeCo-OMPC compared to Pt/C. This effect and high surface area of FeCo-OMPC appear responsible for its significantly high ORR activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...