Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Energy Lett ; 9(4): 1440-1445, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38633999

RESUMEN

Management of the electrode surface temperature is an understudied aspect of (photo)electrode reactor design for complex reactions, such as CO2 reduction. In this work, we study the impact of local electrode heating on electrochemical reduction of CO2 reduction. Using the ferri/ferrocyanide open circuit voltage as a reporter of the effective reaction temperature, we reveal how the interplay of surface heating and convective cooling presents an opportunity for cooptimizing mass transport and thermal assistance of electrochemical reactions, where we focus on reduction of CO2 to carbon-coupled (C2+) products. The introduction of an organic coating on the electrode surface facilitates well-behaved electrode kinetics with near-ambient bulk electrolyte temperature. This approach helps to probe the fundamentals of thermal effects in electrochemical reactions, as demonstrated through Bayesian inference of Tafel kinetic parameters from a suite of high throughput experiments, which reveal a decrease in overpotential for C2+ products by 0.1 V on polycrystalline copper via 60 °C surface heating.

2.
JACS Au ; 4(2): 344-368, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425928

RESUMEN

Metalloenzymes with heteromultimetallic active sites perform chemical reactions that control several biogeochemical cycles. Transformations catalyzed by such enzymes include dioxygen generation and reduction, dinitrogen reduction, and carbon dioxide reduction-instrumental transformations for progress in the context of artificial photosynthesis and sustainable fertilizer production. While the roles of the respective metals are of interest in all these enzymatic transformations, they share a common factor in the transfer of one or multiple redox equivalents. In light of this feature, it is surprising to find that incorporation of redox-inactive metals into the active site of such an enzyme is critical to its function. To illustrate, the presence of a redox-inactive Ca2+ center is crucial in the Oxygen Evolving Complex, and yet particularly intriguing given that the transformation catalyzed by this cluster is a redox process involving four electrons. Therefore, the effects of redox inactive metals on redox processes-electron transfer, oxygen- and hydrogen-atom transfer, and O-O bond cleavage and formation reactions-mediated by transition metals have been studied extensively. Significant effects of redox inactive metals have been observed on these redox transformations; linear free energy correlations between Lewis acidity and the redox properties of synthetic model complexes are observed for several reactions. In this Perspective, these effects and their relevance to multielectron processes will be discussed.

3.
J Am Chem Soc ; 146(8): 5045-5050, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38358932

RESUMEN

Nitrogenases, the enzymes that convert N2 to NH3, also catalyze the reductive coupling of CO to yield hydrocarbons. CO-coordinated species of nitrogenase clusters have been isolated and used to infer mechanistic information. However, synthetic FeS clusters displaying CO ligands remain rare, which limits benchmarking. Starting from a synthetic cluster that models a cubane portion of the FeMo cofactor (FeMoco), including a bridging carbyne ligand, we report a heterometallic tungsten-iron-sulfur cluster with a single terminal CO coordination in two oxidation states with a high level of CO activation (νCO = 1851 and 1751 cm-1). The local Fe coordination environment (2S, 1C, 1CO) is identical to that in the protein making this system a suitable benchmark. Computational studies find an unusual intermediate spin electronic configuration at the Fe sites promoted by the presence the carbyne ligand. This electronic feature is partly responsible for the high degree of CO activation in the reduced cluster.

4.
Nano Lett ; 24(4): 1090-1095, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230969

RESUMEN

Photoelectrochemical CO2 reduction (CO2R) is an appealing solution for converting carbon dioxide into higher-value products. However, CO2R in aqueous electrolytes suffers from poor selectivity due to the competitive hydrogen evolution reaction that is dominant on semiconductor surfaces in aqueous electrolytes. We demonstrate that functionalizing gold/p-type gallium nitride devices with a film derived from diphenyliodonium triflate suppresses hydrogen generation from 90% to 18%. As a result, we observe increases in the Faradaic efficiency and partial current density for carbon monoxide of 50% and 3-fold, respectively. Furthermore, we demonstrate through optical absorption measurements that the molecular film employed herein, regardless of thickness, does not affect the photocathode's light absorption. Altogether, this study provides a rigorous platform for elucidating the catalytic structure-property relationships to enable engineering of active, stable, and selective materials for photoelectrochemical CO2R.

5.
J Am Chem Soc ; 145(48): 26463-26471, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37992227

RESUMEN

Polar monomer-induced ß-H elimination is a key elementary step in polar polyolefin synthesis by coordination polymerization but remains underexplored. Herein, we show that a bulky neutral Ni catalyst, 1Ph, is not only a high-performance catalyst in ethylene/acrylate copolymerization (activity up to ∼37,000 kg/(mol·h) at 130 °C in a batch reactor, mol % tBA ∼ 0.3) but also a suitable platform for investigation of acrylate-induced ß-H elimination. 4Ph-tBu, a novel Ni alkyl complex generated after acrylate-induced ß-H elimination and subsequent acrylate insertion, was identified and characterized by crystallography. A combination of catalysis and mechanistic studies reveals effects of the acrylate monomer, bidentate ligand, and the labile ligand (e.g., pyridine) on the kinetics of ß-H elimination, the role of ß-H elimination in copolymerization catalysis as a chain-termination pathway, and its potential in controlling the polymer microstructure in polar polyolefin synthesis.

6.
Angew Chem Int Ed Engl ; 62(49): e202313880, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37871234

RESUMEN

Atomically defined large metal clusters have applications in new reaction development and preparation of materials with tailored properties. Expanding the synthetic toolbox for reactive high nuclearity metal complexes, we report a new class of Fe clusters, Tp*4 W4 Fe13 S12 , displaying a Fe13 core with M-M bonds that has precedent only in main group and late metal chemistry. M13 clusters with closed shell electron configurations can show significant stability and have been classified as superatoms. In contrast, Tp*4 W4 Fe13 S12 displays a large spin ground state of S=13. This compound performs small molecule activations involving the transfer of up to 12 electrons resulting in significant cluster rearrangements.

7.
J Am Chem Soc ; 145(27): 14592-14598, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37366634

RESUMEN

The S2 state of the Oxygen Evolving Complex (OEC) of Photosystem II (PSII) shows high-spin (HS) and low-spin (LS) EPR signals attributed to distinct structures based on computation. Five-coordinate MnIII centers are proposed in these species but are absent in available spectroscopic model complexes. Herein, we report the synthesis, crystal structure, electrochemistry, SQUID magnetometry, and EPR spectroscopy of a MnIIIMnIV3O4 cuboidal complex featuring five-coordinate MnIII. This cluster displays a spin ground state of S = 5/2, while conversion to a six-coordinate Mn upon treatment with water results in a spin state change to S = 1/2. These results demonstrate that coordination number, without dramatic changes within the Mn4O4 core, has a substantial effect on spectroscopy.

8.
Angew Chem Int Ed Engl ; 62(12): e202216102, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36656130

RESUMEN

Electrochemical CO2 reduction (CO2 R) at low pH is desired for high CO2 utilization; the competing hydrogen evolution reaction (HER) remains a challenge. High alkali cation concentration at a high operating current density has recently been used to promote electrochemical CO2 R at low pH. Herein we report an alternative approach to selective CO2 R (>70 % Faradaic efficiency for C2+ products, FEC2+ ) at low pH (pH 2; H3 PO4 /KH2 PO4 ) and low potassium concentration ([K+ ]=0.1 M) using organic film-modified polycrystalline copper (Modified-Cu). Such an electrode effectively mitigates HER due to attenuated proton transport. Modified-Cu still achieves high FEC2+ (45 % with Cu foil /55 % with Cu GDE) under 1.0 M H3 PO4 (pH≈1) at low [K+ ] (0.1 M), even at low operating current, conditions where HER can otherwise dominate.

9.
Inorg Chem ; 62(5): 1791-1796, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35829634

RESUMEN

Synthetic complexes provide useful models to study the interplay between the structure and spectroscopy of the different Sn-state intermediates of the oxygen-evolving complex (OEC) of photosystem II (PSII). Complexes containing the MnIV4 core corresponding to the S3 state, the last observable intermediate prior to dioxygen formation, remain very rare. Toward the development of synthetic strategies to stabilize highly oxidized tetranuclear complexes, ligands with increased anion charge were pursued. Herein, we report the synthesis, electrochemistry, SQUID magnetometry, and electron paramagnetic resonance spectroscopy of a stable MnIV4O4 cuboidal complex supported by a disiloxide ligand. The substitution of an anionic acetate or amidate ligand with a dianionic disiloxide ligand shifts the reduction potential of the MnIIIMnIV3/MnIV4 redox couple by up to ∼760 mV, improving stability. The S = 3 spin ground state of the siloxide-ligated MnIV4O4 complex matches the acetate and amidate variants, in corroboration with the MnIV4 assignment of the S3 state of the OEC.

10.
J Am Chem Soc ; 145(1): 2-6, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36537723

RESUMEN

The presence of a carbide ligand in the active site of nitrogenases remains an unusual example of organometallic chemistry employed by a protein. Carbide incorporation into the MFe7S9C cluster involves complex biosynthesis, but analogous synthetic methodologies are limited. Herein, we present a new synthetic strategy for incorporating carbon based bridging ligands into iron-sulfur clusters. Starting from a halide precursor, a WFe3S3 cluster displaying three terminal alkyl ligands and an open Fe3 face was prepared. Oxidation results in loss of alkane and formation of a µ3-carbyne. Characterization of these clusters and mechanistic studies are presented.


Asunto(s)
Proteínas Hierro-Azufre , Hierro , Hierro/química , Ligandos , Oxidación-Reducción , Proteínas Hierro-Azufre/química , Azufre/química
11.
Angew Chem Int Ed Engl ; 61(35): e202206637, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35723944

RESUMEN

The insertion copolymerization of polar olefins and ethylene remains a significant challenge in part due to catalysts' low activity and poor thermal stability. Herein we demonstrate a strategy toward addressing these obstacles through ligand design. Neutral nickel phosphine enolate catalysts with large phosphine substituents reaching the axial positions of Ni achieve activity of up to 7.7×103  kg mol-1 h-1 (efficiency >35×103  g copolymer/g Ni) at 110 °C, notable for ethylene/acrylate copolymerization. NMR analysis of resulting copolymers reveals highly linear microstructures with main-chain ester functionality. Structure-performance studies indicate a strong correlation between axial steric hindrance and catalyst performance.

12.
Inorg Chem ; 61(20): 7710-7714, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35532950

RESUMEN

The synthesis and characterization of a series of naphthalenediyl-diphosphine molybdenum complexes are reported. A novel dicarbonyl-Mo complex (3) converts to a bis(siloxy)acetylene complex (5) upon reduction and treatment with a silyl electrophile, Me3SiCl. This process shows exclusive C-C coupling distinct from the previously reported phenylene-linked analogue that undergoes C-O cleavage. Further CO catenation can be engendered from 5 under mild conditions providing metallacyclobutenone complex 6, with a C3O3 organic motif derived from CO. Differences in reactivity are assigned to the nature of the arene linker, where the naphthalenediyl fragment shows a propensity for η4 binding previously not observed for phenylene. Consistent with this hypothesis, a Mo precursor with a 1,3-cyclohexadienediyl-based linker was prepared which also showed exclusive formation of a bis(siloxy)acetylene complex and subsequent coupling of a third CO molecule.


Asunto(s)
Monóxido de Carbono , Molibdeno , Alquinos , Molibdeno/química
13.
Chem Commun (Camb) ; 58(29): 4655-4658, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35319046

RESUMEN

The reaction of a terminal Mo(II) nitride with a U(III) complex yields a heterodimetallic U-Mo nitride which is the first example of a transition metal-capped uranium nitride. The nitride is triply bonded to U(V) and singly bonded to Mo(0) and supports a U-Mo interaction. This compound shows reactivity toward CO oxidation.

14.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34857636

RESUMEN

Nitrogen-fixing organisms perform dinitrogen reduction to ammonia at an Fe-M (M = Mo, Fe, or V) cofactor (FeMco) of nitrogenase. FeMco displays eight metal centers bridged by sulfides and a carbide having the MFe7S8C cluster composition. The role of the carbide ligand, a unique motif in protein active sites, remains poorly understood. Toward addressing how the carbon bridge affects the physical and chemical properties of the cluster, we isolated synthetic models of subsite MFe3S3C displaying sulfides and a chelating carbyne ligand. We developed synthetic protocols for structurally related clusters, [Tp*M'Fe3S3X]n-, where M' = Mo or W, the bridging ligand X = CR, N, NR, S, and Tp* = Tris(3,5-dimethyl-1-pyrazolyl)hydroborate, to study the effects of the identity of the heterometal and the bridging X group on structure and electrochemistry. While the nature of M' results in minor changes, the chelating, µ3-bridging carbyne has a large impact on reduction potentials, being up to 1 V more reducing compared to nonchelating N and S analogs.


Asunto(s)
Hierro/metabolismo , Molibdeno/metabolismo , Molibdoferredoxina/química , Carbamatos/química , Carbamatos/metabolismo , Carbono/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Hierro/química , Ligandos , Modelos Moleculares , Estructura Molecular , Molibdeno/química , Molibdoferredoxina/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno/fisiología , Nitrogenasa/metabolismo , Oxidación-Reducción , Sulfuros/química , Sulfuros/metabolismo , Azufre/metabolismo
15.
ACS Cent Sci ; 7(10): 1756-1762, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34729419

RESUMEN

Boundary conditions for catalyst performance in the conversion of common precursors such as N2, O2, H2O, and CO2 are governed by linear free energy and scaling relationships. Knowledge of these limits offers an impetus for designing strategies to alter reaction mechanisms to improve performance. Typically, experimental demonstrations of linear trends and deviations from them are composed of a small number of data points constrained by inherent experimental limitations. Herein, high-throughput experimentation on 14 bulk copper bimetallic alloys allowed for data-driven identification of a scaling relationship between the partial current densities of methane and C2+ products. This strict dependence represents an intrinsic limit to the Faradaic efficiency for C-C coupling. We have furthermore demonstrated that coating the electrodes with a molecular film breaks the scaling relationship to promote C2+ product formation.

16.
Angew Chem Int Ed Engl ; 60(52): 27220-27224, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34695278

RESUMEN

We report the synthesis and spectroscopic characterization of a series of iron-carbene complexes in redox states {Fe=C(H)Ar}10-11 . Pulse EPR studies of the 1,2 H and 13 C isotopologues of {Fe=C(H)Ar}11 reveal the high covalency of the Fe-carbene bonding, leading to a more even spin distribution than commonly observed for reduced Fischer carbenes.

17.
J Am Chem Soc ; 143(33): 13091-13102, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34379389

RESUMEN

Open-shell compounds bearing metal-carbon triple bonds, such as carbides and carbynes, are of significant interest as plausible intermediates in the reductive catenation of C1 oxygenates. Despite the abundance of closed-shell carbynes reported, open-shell variants are very limited, and an open-shell carbide has yet to be reported. Herein, we report the synthesis of the first terminal, open-shell carbide complexes, [K][1] and [1][BArF4] (1 = P2Mo(≡C:)(CO), P2 = a terphenyl diphosphine ligand), which differ by two redox states, as well as a series of related open-shell carbyne complexes. The complexes are characterized by single-crystal X-ray diffraction and NMR, EPR, and IR spectroscopies, while the electronic structures are probed by EPR studies and DFT calculations to assess spin delocalization. In the d1 complexes, the spin is primarily localized on the metal (∼55-77% Mo dxy) with delocalization on the triply bonded carbon of ∼0.05-0.09 e-. In the reduced carbide [K][1], a direct metal-arene interaction enables ancillary ligand reduction, resulting in reduced radical character on the terminal carbide (⩽0.02 e-). Reactivity studies with [K][1] reveal the formation of mixed-valent C-C coupled products at -40 °C, illustrating how productive reactivity manifolds can be engendered through the manipulation of redox states. Combined, the results inform on the electronic structure and reactivity of a new and underrepresented class of compounds with potential significance to a wide array of reactions involving open-shell species.

18.
Angew Chem Int Ed Engl ; 60(32): 17671-17679, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34042234

RESUMEN

We report the single crystal XRD and MicroED structure, magnetic susceptibility, and EPR data of a series of CaMn3IV O4 and YMn3IV O4 complexes as structural and spectroscopic models of the cuboidal subunit of the oxygen-evolving complex (OEC). The effect of changes in heterometal identity, cluster geometry, and bridging oxo protonation on the spin-state structure was investigated. In contrast to previous computational models, we show that the spin ground state of CaMn3IV O4 complexes and variants with protonated oxo moieties need not be S=9/2. Desymmetrization of the pseudo-C3 -symmetric Ca(Y)Mn3IV O4 core leads to a lower S=5/2 spin ground state. The magnitude of the magnetic exchange coupling is attenuated upon oxo protonation, and an S=3/2 spin ground state is observed in CaMn3IV O3 (OH). Our studies complement the observation that the interconversion between the low-spin and high-spin forms of the S2 state is pH-dependent, suggesting that the (de)protonation of bridging or terminal oxygen atoms in the OEC may be connected to spin-state changes.


Asunto(s)
Materiales Biomiméticos/química , Hidrocarburos Aromáticos con Puentes/química , Complejos de Coordinación/química , Protones , Materiales Biomiméticos/síntesis química , Hidrocarburos Aromáticos con Puentes/síntesis química , Calcio/química , Complejos de Coordinación/síntesis química , Espectroscopía de Resonancia por Spin del Electrón , Manganeso/química , Estructura Molecular , Complejo de Proteína del Fotosistema II/química , Itrio/química
19.
J Am Chem Soc ; 143(17): 6516-6527, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33885285

RESUMEN

The efficient copolymerization of acrylates with ethylene using Ni catalysts remains a challenge. Herein, we report two neutral Ni(II) catalysts (POP-Ni-py (1) and PONap-Ni-py (2)) that exhibit high thermal stability and significantly higher incorporation of polar monomer (for 1) or improved resistance to tert-butylacrylate (tBA)-induced chain transfer (for 2), in comparison to previously reported catalysts. Nickel alkyl complexes generated after tBA insertion, POP-Ni-CCO(py) (3) and PONap-Ni-CCO(py) (4), were isolated and, for the first time, characterized by crystallography. Weakened lutidine vs pyridine coordination in 2-lut facilitated the isolation of a N-donor-free adduct after acrylate insertion PONap-Ni-CCO (5) which represents a novel example of a four-membered chelate relevant to acrylate polymerization catalysis. Experimental kinetic studies of six cases of monomer insertion with aforementioned nickel complexes indicate that pyridine dissociation and monomer coordination are fast relative to monomer migratory insertion and that monomer enchainment after tBA insertion is the rate limiting step of copolymerization. Further evaluation of monomer insertion using density functional theory studies identified a cis-trans isomerization via Berry-pseudorotation involving one of the pendant ether groups as the rate-limiting step for propagation, in the absence of a polar group at the chain end. The energy profiles for ethylene and tBA enchainments are in qualitative agreement with experimental measurements.

20.
ACS Cent Sci ; 6(11): 2088-2096, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33274285

RESUMEN

Singlet fission has the potential to surpass current efficiency limits in next-generation photovoltaics and to find use in quantum information science. Despite the demonstration of singlet fission in various materials, there is still a great need for fundamental design principles that allow for tuning of photophysical parameters, including the rate of fission and triplet lifetimes. Here, we describe the synthesis and photophysical characterization of a novel bipentacene dipyridyl pyrrole (HDPP-Pent) and its Li- and K-coordinated derivatives. HDPP-Pent undergoes singlet fission at roughly 50% efficiency (τSF = 730 ps), whereas coordination in the Li complex induces significant structural changes to generate a dimer, resulting in a 7-fold rate increase (τSF = 100 ps) and more efficient singlet fission with virtually no sacrifice in triplet lifetime. We thus illustrate novel design principles to produce favorable singlet fission properties, wherein through-space control can be achieved via coordination chemistry-induced multipentacene assembly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA