Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 14(12): 1223-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26436339

RESUMEN

Filled skutterudites R(x)Co4Sb12 are excellent n-type thermoelectric materials owing to their high electronic mobility and high effective mass, combined with low thermal conductivity associated with the addition of filler atoms into the void site. The favourable electronic band structure in n-type CoSb3 is typically attributed to threefold degeneracy at the conduction band minimum accompanied by linear band behaviour at higher carrier concentrations, which is thought to be related to the increase in effective mass as the doping level increases. Using combined experimental and computational studies, we show instead that a secondary conduction band with 12 conducting carrier pockets (which converges with the primary band at high temperatures) is responsible for the extraordinary thermoelectric performance of n-type CoSb3 skutterudites. A theoretical explanation is also provided as to why the linear (or Kane-type) band feature is not beneficial for thermoelectrics.

2.
Phys Rev Lett ; 110(17): 176401, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23679748

RESUMEN

Employing ab initio electronic structure calculations, we predict that trigonal tellurium consisting of weakly interacting helical chains undergoes a trivial insulator to strong topological insulator (metal) transition under shear (hydrostatic or uniaxial) strain. The transition is demonstrated by examining the strain evolution of the band structure, the topological Z2 invariant and the concomitant band inversion. The underlying mechanism is the depopulation of the lone-pair orbitals associated with the valence band via proper strain engineering. Thus, Te becomes the prototype of a novel family of chiral-based three-dimensional topological insulators with important implications in spintronics, magneto-optics, and thermoelectrics.

3.
Nanotechnology ; 23(13): 135202, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22418779

RESUMEN

We demonstrate that biological molecules such as Watson-Crick DNA base pairs can behave as biological Aviram-Ratner electrical rectifiers because of the spatial separation and weak hydrogen bonding between the nucleobases. We have performed a parallel computational implementation of the ab initio non-equilibrium Green's function (NEGF) theory to determine the electrical response of graphene--base-pair--graphene junctions. The results show an asymmetric (rectifying) current-voltage response for the cytosine-guanine base pair adsorbed on a graphene nanogap. In sharp contrast we find a symmetric response for the thymine-adenine case. We propose applying the asymmetry of the current-voltage response as a sensing criterion to the technological challenge of rapid DNA sequencing via graphene nanogaps.


Asunto(s)
ADN/química , Grafito , Nanoestructuras , Análisis de Secuencia de ADN/métodos , Emparejamiento Base , Técnicas Electroquímicas , Modelos Moleculares , Nanoestructuras/química , Nanotecnología
4.
Nanotechnology ; 22(26): 265201, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21576804

RESUMEN

We have fabricated suspended few-layer (1-3 layers) graphene nanoribbon field-effect transistors from unzipped multi-wall carbon nanotubes. Electrical transport measurements show that current annealing effectively removes the impurities on the suspended graphene nanoribbons, uncovering the intrinsic ambipolar transfer characteristic of graphene. Further increasing the annealing current creates a narrow constriction in the ribbon, leading to the formation of a large bandgap and subsequent high on/off ratio (which can exceed 10(4)). Such fabricated devices are thermally and mechanically stable: repeated thermal cycling has little effect on their electrical properties. This work shows for the first time that ambipolar field-effect characteristics and high on/off ratios at room temperature can be achieved in relatively wide graphene nanoribbons (15-50 nm) by controlled current annealing.

5.
J Phys Chem C Nanomater Interfaces ; 115(6): 2874-2879, 2011 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-21383866

RESUMEN

Magnetism in graphene nanofragments arises from the spin polarization of the edge-states; consequently, as the material inexorably shrinks, magnetism will become a dominant feature whereas the bulk carrier mobility will be less relevant. We have carried out an ab initio study of the role of graphene-ultra-nanofragment magnetism on electronic transport. We present, as a proof-of-concept, a nanoscopic spin-polarized field-effect transistor (FET) with the channel and metallic contacts carved from a single graphene sheet. We demonstrate the selective tuning of conductance through electric-field control of the magnetic, rather than the charge, degrees of freedom of the channel, the latter typically employed in microscopic graphene FETs.

6.
Phys Rev B Condens Matter Mater Phys ; 82(20): 201411, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21765631

RESUMEN

Employing ab initio calculations we predict that the magnetic states of hydrogenated diamond-shaped zigzag graphene quantum dots (GQDs), each exhibiting unique electronic structure, can be selectively tuned with gate voltage, through Stark or hybridization electric-field modulation of the spatial distribution and energy of the spin-polarized molecular orbitals, leading to transitions between these states. Electrical read-out of the GQD magnetic state can be accomplished by exploiting the distinctive electrical properties of the various magnetic configurations.

7.
J Phys Chem A ; 110(12): 4260-5, 2006 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-16553379

RESUMEN

We introduce a posteriori multiplicity-based corrections to ab initio energies in order to reproduce experimental atomization energies. This simple approach, as compared to the alternative ones to improve density functionals and standard correlated methods, requires less computational resources than higher levels of theory. We extend our approach to include molecules containing second-row elements. Molecules are taken from the Gaussian sets for which experimental values are known with errors of less than 1 kcal/mol. We postulate that inexpensive multiplicity-based corrections can account for effects that are not accounted because of the low level of theory of the method or because of the small basis used for the calculations.

8.
J Phys Chem A ; 110(3): 1060-4, 2006 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-16420008

RESUMEN

Energy correctors are introduced for the calculation of molecular energies of compounds containing first row atoms (Li-F) to modify ab initio molecular orbital calculations of energies to better reproduce experimental results. Four additive correctors are introduced to compensate for the differences in the treatment of molecules with different spin multiplicities and multiplicative correctors are also calculated for the electronic and zero-point vibrational energies. These correctors, individually and collectively yield striking improvements in the atomization energies for several ab initio methods. We use as training set the first row subset of molecules from the G1 basis of molecules; when the correctors are applied to other molecules not included in the training set, selected from the G3 basis, similar improvements in the atomization energies are obtained. The special case of the B3PW91/cc-pVTZ yields an average error of 1.2 kcal/mol, which is already within a chemical accuracy and comparable to the Gaussian-n theories accuracy. The very inexpensive B3PW91/6-31G** yields an average error of 2.1 kcal/mol using the correctors. Methods considered unsuitable for energetics such as HF and LSDA yield corrected energies comparable to those obtained with the best highly correlated methods.

9.
J Nanosci Nanotechnol ; 4(7): 907-17, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15570981

RESUMEN

Reproducible negative differential resistance (NDR)-like switching behavior is observed in NanoCells. This behavior is attributed to the formation of filaments and clusters between the discontinuous gold films. Control experiments are performed by self-assembly of insulating molecules between the gold islands and conducting molecules on these islands. Additional control experiments are performed by removing the filaments and clusters between islands using a piranha bath. The results are consistent with theoretical predictions and extend the domain of molecular electronics based in organic molecules to include nanosized clusters as active units. This facilitates a scenario where synthetically accessible organic molecules, with defined characteristics, can be adjusted by metallic nanoclusters as an in situ fine-tuning element, able to compensate for the lack of addressing in the nanosize regime.


Asunto(s)
Oro/química , Nanoestructuras/química , Nanotecnología/métodos , Impedancia Eléctrica , Electrónica , Electrones , Ensayo de Materiales , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...