RESUMEN
Formalin-fixed paraffin-embedded (FFPE) tissue represents a valuable source for translational cancer research. However, the widespread application of various downstream methods remains challenging. Here, we aimed to assess the feasibility of a genomic and gene expression analysis workflow using FFPE breast cancer (BC) tissue. We conducted a systematic literature review for the assessment of concordance between FFPE and fresh-frozen matched tissue samples derived from patients with BC for DNA and RNA downstream applications. The analytical performance of three different nucleic acid extraction kits on FFPE BC clinical samples was compared. We also applied a newly developed targeted DNA Next-Generation Sequencing (NGS) 370-gene panel and the nCounter BC360® platform on simultaneously extracted DNA and RNA, respectively, using FFPE tissue from a phase II clinical trial. Of the 3701 initial search results, 40 articles were included in the systematic review. High degree of concordance was observed in various downstream application platforms. Moreover, the performance of simultaneous DNA/RNA extraction kit was demonstrated with targeted DNA NGS and gene expression profiling. Exclusion of variants below 5% variant allele frequency was essential to overcome FFPE-induced artefacts. Targeted genomic analyses were feasible in simultaneously extracted DNA/RNA from FFPE material, providing insights for their implementation in clinical trials/cohorts.
Asunto(s)
Neoplasias de la Mama , Estudios de Factibilidad , Formaldehído , Genómica , Adhesión en Parafina , Fijación del Tejido , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Adhesión en Parafina/métodos , Femenino , Formaldehído/química , Fijación del Tejido/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Perfilación de la Expresión Génica/métodosRESUMEN
PURPOSE: PREDIX HER2 is a randomized Phase II trial that compared neoadjuvant docetaxel, trastuzumab, and pertuzumab (THP) with trastuzumab emtansine (T-DM1) for HER2-positive breast cancer. Rates of pathologic complete response (pCR) did not differ between the two groups. Here, we present the survival outcomes from PREDIX HER2 and investigate metabolic response and tumor-infiltrating lymphocytes (TIL) as prognostic factors. PATIENTS AND METHODS: In total, 202 patients with HER2-positive breast cancer were enrolled and 197 patients received six cycles of either THP or T-DM1. Secondary endpoints included event-free survival (EFS), recurrence-free survival (RFS), and overall survival (OS). Assessment with PET/CT was performed at baseline, after two and six treatment cycles. TILs were assessed manually at baseline biopsies, while image-based evaluation of TILs [digital TILs (DTIL)] was performed in digitized full-face sections. RESULTS: After a median follow-up of 5.21 years, there was no difference between the two treatment groups in terms of EFS [HR = 1.26; 95% confidence interval (CI), 0.54-2.91], RFS (HR = 0.69; 95% CI, 0.24-1.93), or OS (HR = 0.52; 95% CI, 0.09-2.82). Higher SUVmax at cycle 2 (C2) predicted lower pCR (ORadj = 0.65; 95% CI, 0.48-0.87; P = 0.005) and worse EFS (HRadj = 1.27; 95% CI, 1.12-1.41; P < 0.001). Baseline TILs and DTILs provided additional prognostic information to clinical parameters and C2 SUVmax. CONCLUSIONS: Long-term outcomes following neoadjuvant T-DM1 were similar to neoadjuvant THP. SUVmax after two cycles of neoadjuvant therapy for HER2-positive breast cancer may be an independent predictor of both short- and long-term outcomes. Combined assessment with TILs may facilitate early selection of poor responders for alternative treatment strategies.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Terapia Neoadyuvante , Tomografía Computarizada por Tomografía de Emisión de Positrones , Receptor ErbB-2/metabolismo , Linfocitos Infiltrantes de Tumor , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Trastuzumab , Ado-Trastuzumab Emtansina/uso terapéuticoRESUMEN
Emerging data indicate that genomic alterations can shape immune cell composition in early breast cancer. However, there is a need for complementary imaging and sequencing methods for the quantitative assessment of combined somatic copy number alteration (SCNA) and immune profiling in pathological samples. Here, we tested the feasibility of three approaches-CUTseq, for high-throughput low-input SCNA profiling, multiplexed fluorescent immunohistochemistry (mfIHC) and digital-image analysis (DIA) for quantitative immuno-profiling- in archival formalin-fixed paraffin-embedded (FFPE) tissue samples from patients enrolled in the randomized SBG-2004-1 phase II trial. CUTseq was able to reproducibly identify amplification and deletion events with a resolution of 100 kb using only 6 ng of DNA extracted from FFPE tissue and pooling together 77 samples into the same sequencing library. In the same samples, mfIHC revealed that CD4 + T-cells and CD68 + macrophages were the most abundant immune cells and they mostly expressed PD-L1 and PD-1. Combined analysis showed that the SCNA burden was inversely associated with lymphocytic infiltration. Our results set the basis for further applications of CUTseq, mfIHC and DIA to larger cohorts of early breast cancer patients.
RESUMEN
Importance: Trastuzumab emtansine (T-DM1) is presently approved for treatment of advanced breast cancer and after incomplete response to neoadjuvant therapy, but the potential of T-DM1 as monotherapy is so far unknown. Objective: To assess pathologic complete response (pCR) to standard neoadjuvant therapy of combination docetaxel, trastuzumab, and pertuzumab (DTP) vs T-DM1 monotherapy in patients with ERBB2 (formerly HER2)-positive breast cancer. Design, Setting, and Participants: This randomized phase 2 trial, conducted at 9 sites in Sweden, enrolled 202 patients between December 1, 2014, and October 31, 2018. Participants were 18 years or older, with ERBB2-positive tumors larger than 20 mm and/or verified lymph node metastases. Analysis was performed on an intention-to-treat basis. Interventions: Patients were randomized to receive 6 cycles of DTP (standard group) or T-DM1 (investigational group). Crossover was recommended at lack of response or occurrence of intolerable toxic effects. Assessment with fluorine 18-labeled fluorodeoxyglucose (18F-FDG) positron emission tomography combined with computed tomography (PET-CT) was performed at baseline and after 2 and 6 treatment cycles. Main Outcome and Measures: Pathologic complete response, defined as ypT0 or Tis ypN0. Secondary end points were clinical and radiologic objective response; event-free survival, invasive disease-free survival, distant disease-free survival, and overall survival; safety; health-related quality of life (HRQoL); functional and biological tumor characteristics; and frequency of breast-conserving surgery. Results: Overall, 202 patients were randomized; 197 (99 women in the standard group [median age, 51 years (range, 26-73 years)] and 98 women in the investigational group [median age, 53 years (range, 28-74 years)]) were evaluable for the primary end point. Pathologic complete response was achieved in 45 patients in the standard group (45.5%; 95% CI 35.4%-55.8%) and 43 patients in the investigational group (43.9%; 95% CI 33.9%-54.3%). The difference was not statistically significant (P = .82). In a subgroup analysis, the pCR rate was higher in hormone receptor-negative tumors than in hormone receptor-positive tumors in both treatment groups (45 of 72 [62.5%] vs 45 of 125 [36.0%]). Three patients in the T-DM1 group experienced progression during therapy. In an exploratory analysis, tumor-infiltrating lymphocytes at 10% or more (median) estimated pCR significantly (odds ratio, 2.76; 95% CI, 1.42-5.36; P = .003). Response evaluation with 18F-FDG PET-CT revealed a relative decrease of maximum standardized uptake value by equal to or greater than 68.7% (median) was associated with pCR (odds ratio, 6.74, 95% CI, 2.75-16.51; P < .001). Conclusions and Relevance: In this study, treatment with standard neoadjuvant combination DTP was equal to T-DM1. Trial Registrations: ClinicalTrials.gov Identifier: NCT02568839; EudraCT number: 2014-000808-10.