Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 57(21): 6198-6206, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30118000

RESUMEN

Accurately extracting phase or phase derivative is the most important requirement in optical metrology. However, in practice, there are many error sources, among which nonlinear distortion in fringe patterns is often encountered. Several techniques have been proposed over time to remove the nonlinearity error. Among these techniques, the windowed Fourier ridges (WFR) algorithm has been shown to be an effective solution insensitive to nonlinearity, but it lacks a theoretical justification. In this paper, we theoretically analyze the local frequency estimation error and phase extraction error, which not only proves the mentioned insensitivity, but also supports the performance prediction and error control, and thus is very important and useful in optical measurement. The theoretical results have been verified by computer simulations. Other error sources such as model error and noise are also compared and discussed.

2.
Appl Opt ; 57(36): 10402-10411, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30645383

RESUMEN

Phase measurement techniques using a single-shot carrier fringe pattern play an important role in optical science and technology and have been widely used for various applications. In this paper, we focus on the comparative study of two major fringe analysis techniques, the sampling moiré (SM) and the windowed Fourier transform (WFT). While SM converts a single-fringe pattern to multiple phase-shifted moiré fringe patterns to extract the phase information in the spatial domain, WFT obtains the phase information in the windowed Fourier domain; thus, the two methods look entirely different. We evaluate the phase extraction errors of SM and windowed Fourier ridges (WFRs) as a typical WFT method for both linear and nonlinear phases with/without noise against the reference Fourier transform (FT) technique. For the simulated fringe patterns with linear or nonlinear phase and different random noise level, all the methods have high phase extraction accuracies. For a real experiment with more complicated phase and discontinuities, SM and WFR, both local methods, yield quite similar results and outperform FT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...