RESUMEN
Fungus-growing termites, like Odontotermes obesus, cultivate Termitomyces as their sole food source on fungus combs which are continuously maintained with foraged plant materials. This necessary augmentation also increases the threat of introducing non-specific fungi capable of displacing Termitomyces. The magnitude of this threat and how termites prevent the invasion of such fungi remain largely unknown. This study identifies these non-specific fungi by establishing the pan-mycobiota of O. obesus from the fungus comb and termite castes. Furthermore, to maximize the identification of such fungi, the mycobiota of the decaying stages of the unattended fungus comb were also assessed. The simultaneous assessment of the microbiota and the mycobiota of these stages identified possible interactions between the fungal and bacterial members of this community. Based on these findings, we propose possible interactions among the crop fungus Termitomyces, the weedy fungus Pseudoxylaria and some bacterial symbiotes. These possibilities were then tested with in vitro interaction assays which suggest that Termitomyces, Pseudoxylaria and certain potential bacterial symbiotes possess anti-fungal capabilities. We propose a multifactorial interaction model of these microbes, under the care of the termites, to explain how their interactions can maintain a predominantly Termitomyces monoculture.
Asunto(s)
Isópteros , Simbiosis , Termitomyces , Isópteros/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Micobioma , Hongos/fisiología , Hongos/clasificaciónRESUMEN
Obligate mutualisms, reciprocally obligate beneficial interactions, are some of the most important mutualisms on the planet, providing the basis for the evolution of the eukaryotic cell, the formation and persistence of terrestrial ecosystems and the establishment and expansion of coral reefs. In addition, these mutualisms can also lead to the diversification of interacting partner species. Accompanying this diversification is a general pattern of a high degree of specificity among interacting partner species. A survey of obligate mutualisms demonstrates that greater than half of these systems have only one or two mutualist species on each side of the interaction. This is in stark contrast to facultative mutualisms that can have dozens of interacting mutualist species. We posit that the high degree of specificity in obligate mutualisms is driven by competition within obligate mutualist guilds that limits species richness. Competition may be particularly potent in these mutualisms because mutualistic partners are totally dependent on each other's fitness gains, which may fuel interspecific competition. Theory and the limited number of empirical studies testing for the role of competition in determining specificity suggest that competition may be an important force that fuels the high degree of specificity. Further empirical research is needed to dissect the relative roles of trait complementarity, mutualism regulation, and competition among mutualist guild members in determining mutualism specificity at local scales.
RESUMEN
This study investigates the role of bacterial endophytes from extreme alkaline environments in alleviating alkaline stress and plant development. Stressful environmental factors, such as soil acidity and alkalinity/sodicity, frequently affect plant development. In the present study, alkaline-tolerant endophytic strains were isolated from three plant species Saccharum munja, Calotropis procera, and Chenopodium album, and 15 out of the total of 48 isolates were selected for further examination of their abiotic stress tolerance. Molecular analysis based on 16S rRNA gene sequencing revealed strains from Enterobacter, Acinetobacter, Stenotrophomonas, Bacillus, Lysinibacillus, and Mammaliicoccus genera. Out of 15 isolates based on their quantitative PGP traits and abiotic stress tolerance, 6 were finally selected for greenhouse experiments. Under alkaline conditions, results demonstrated that the strains from the genera Enterobacter, Bacillus, Stenotrophomonas, and Lysinibacillus had beneficial effects on maize growth. These findings suggest that using a combination of bacteria with multiple plant growth-promoting attributes could be a sustainable approach to enhance agricultural yield, even in a challenging alkaline environment. The study concludes that the application of bacterial endophytes from plants growing in extremely alkaline environments might provide other plants with similar stress-tolerance abilities. The outcome of the study provides a basis for future exploration of the mechanisms underlying endophyte-induced stress tolerance.
Asunto(s)
Bacillaceae , Bacillus , Zea mays , ARN Ribosómico 16S/genética , Enterobacter/genética , Endófitos/genética , Desarrollo de la PlantaRESUMEN
Insects that farm monocultures of fungi are canonical examples of nutritional symbiosis as well as independent evolution of agriculture in non-human animals. But just like in human agriculture, these fungal crops face constant threat of invasion by weeds which, if unchecked, take over the crop fungus. In fungus-growing termites, the crop fungus (Termitomyces) faces such challenges from the weedy fungus Pseudoxylaria. The mechanism by which Pseudoxylaria is suppressed is not known. However, evidence suggests that some bacterial secondary symbionts can serve as defensive mutualists by preventing the growth of Pseudoxylaria. However, such secondary symbionts must possess the dual, yet contrasting, capabilities of suppressing the weedy fungus while keeping the growth of the crop fungus unaffected. This study describes the isolation, identification, and culture-dependent estimation of the roles of several such putative defensive mutualists from the colonies of the wide-spread fungus-growing termite from India, Odontotermes obesus. From the 38 bacterial cultures tested, a strain of Pseudomonas showed significantly greater suppression of the weedy fungus than the crop fungus. Moreover, a 16S rRNA pan-microbiome survey, using the Nanopore platform, revealed Pseudomonas to be a part of the core microbiota of O. obesus. A meta-analysis of microbiota composition across different species of Odontotermes also confirms the widespread prevalence of Pseudomonas within this termite. These lines of evidence indicate that Pseudomonas could be playing the role of defensive mutualist within Odontotermes.