Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 29(7): 927-945, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37649879

RESUMEN

Myo-inositol oxygenase (MIOX), the only catabolic enzyme of the inositol pathway, catalyzes conversion of myo-inositol to D-GlcA (glucuronic acid). The present study encompasses bioinformatic analysis of MIOX gene across phylogenetically related plant lineages and representative animal groups. Comparative motif analysis of the MIOX gene(s) across various plant groups suggested existence of abiotic- stress related cis-acting elements such as, DRE, MYB, MYC, STRE, MeJa among others. A detailed analysis revealed a single isoform of MIOX gene, located in chromosome 6 of indica rice (Oryza sativa) with an open reading frame of 938 bp coding for 308 amino acids producing a protein of ~ 35 kD. Secondary structure prediction of the protein gave the predicted number of 144 alpha helices and 154 random coils. The three-dimensional structure suggested it to be a monomeric protein with a single domain. Bacterial overexpression of the protein, purification and enzyme assay showed optimal catalytic activity at pH 7.5-8 at an optimal temperature of 37 °C with Michaelis constant of 40.92 mM. The range of Km was determined as 22.74-28.7 mM and the range of Vmax was calculated as 3.51-3.6 µM/min, respectively. Four salt-tolerant and salt-sensitive rice cultivars displayed differential gene expression of OsMIOX at different time points in different tissues under salinity and drought stress as observed from qRT-PCR data, microarray results and protein expression profile in immunoblot analysis. Gel volumetric analysis confirmed a very high expression of MIOX in roots and leaves on 7th day following germination. Microarray data showed high expression of MIOX at all developmental stages including seedling growth and reproduction. These data suggest that OsMIOX might have a role to play in rice abiotic stress responses mediated through the myo-inositol oxidation pathway. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01340-6.

2.
Plant Mol Biol ; 111(1-2): 131-151, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36271987

RESUMEN

KEY MESSAGE: The C-terminal stretch in SbGPRP1 (Sorghum glycine-rich proline-rich protein) acts as an antimicrobial peptide in the host innate defense mechanism. Cationic antimicrobial proteins or peptides can either bind to the bacterial membrane or target a specific protein on the bacterial membrane thus leading to membrane perturbation. The 197 amino acid polypeptide of SbGPRP1 showed disordered structure at the N-terminal end and ordered conformation at the C-terminal end. In the present study, the expression of N-SbGPRP1, C-SbGPRP1, and ∆SbGPRP1 followed by antimicrobial assays showed potential antimicrobial property of the C-terminal peptide against gram-positive bacteria Bacillus subtilis and phytopathogen Rhodococcus fascians. The SbGPRP1 protein loses its antimicrobial property when the 23 amino acid sequence (GHGGHGVFGGGYGHGGYGHGYGG) from position 136 to 158 is deleted from the protein. Thus, it can be concluded that the 23 amino acid sequence is vital for the said antimicrobial property. NPN assay, SEM analysis, and electrolyte leakage assays showed potent antimicrobial activity for C-SbGPRP1. Overexpression of the C-SbGPRP1 mutant protein in tobacco followed by infection with Rhodococcus fascians inhibited bacterial growth as shown by SEM analysis. To determine if C-SbGPRP1 might target any protein on the bacterial membrane we isolated the bacterial membrane protein from both Bacillus subtilis and Rhodococcus fascians. Bacterial membrane protein that interacted with the column-bound C-SbGPRP1 was eluted and subjected to LC-MS/MS. LC-MS/MS data analysis showed peptide hit with membrane protein YszA from Bacillus subtilis and a membrane protein from Rhodococcus fascians. Isolated bacterial membrane protein from Bacillus subtilis or Rhodococcus fascians was able to reduce the antimicrobial activity of C-SbGPRP1. Furthermore, BiFC experiments showed interactions between C-SbGPRP1 and YszA protein from Bacillus subtilis leading to the conclusion that bacterial membrane protein was targeted in such membrane perturbation leading to antimicrobial activity.


Asunto(s)
Antiinfecciosos , Sorghum , Sorghum/metabolismo , Péptidos Antimicrobianos , Prolina , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos , Proteínas Bacterianas/genética , Glicina/farmacología , Glicina/metabolismo , Proteínas de la Membrana Bacteriana Externa
3.
Physiol Mol Biol Plants ; 28(11-12): 2057-2067, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36573145

RESUMEN

Plants are unavoidably exposed to a range of environmental stress factors throughout their life. In addition to the external environmental factors, the production of reactive oxygen species as a product of the cellular metabolic process often causes DNA damage and thus affects genome stability. Homologous recombination (HR) is an essential mechanism used for DNA damage repair that helps to maintain genome integrity. Here we report that the recombinase, PpRecA2, a bacterial RecA homolog from moss Physcomitrium patens can partially complement the function of Escherichia coli RecA in the bacterial system. Transcript analysis showed induced expression of PpRecA2 upon experiencing DNA damaging stressors indicating its involvement in DNA damage sensing and repair mechanism. Over-expressing the chloroplast localizing PpRecA2 confers protection to the chloroplast genome against DNA damage by enhancing the chloroplastic HR frequency in transgenic tobacco plants. Although it fails to protect against nuclear DNA damage when engineered for nuclear localization due to the non-availability of interacting partners. Our results indicate that the chloroplastic HR repair mechanism differs from the nucleus, where chloroplastic HR involves RecA as a key player that resembles the bacterial system. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01264-7.

4.
Plant Physiol Biochem ; 180: 81-90, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35398654

RESUMEN

Nijmegen breakage syndrome 1 (NBS1) protein is a core member of the MRE11-RAD50-NBS1 (MRN) complex that plays a crucial role in DNA damage sensing and repair in plants. Here we report that NBS1 from moss Physcomitrium patens reduces oxidative damage by lowering the cellular ROS in addition to its known role in oxidative DNA damage recovery. Real-time transcript analysis showed up-regulation of the PpNBS1 transcript under different stress conditions. Bacterial cells showed better cell survivability upon over-expressing PpNBS1 protein as compared to untransformed cells. Likewise, overexpression of PpNBS1 in tobacco plants provides improved protection against oxidative damage and exhibited a lesser amount of ROS upon exposure to oxidative stress. Moreover, PpNBS1 contributes to the antioxidant defense mechanism by positively regulating the expression of the antioxidant genes under stress conditions in transgenic tobacco plants. PpNBS1 expressing transgenic tobacco plants resulted in lesser membrane damage, lower lipid peroxidation level, and higher chlorophyll content under stress conditions. Taken together, we conclude in addition to its known role as DNA damage sensor, PpNBS1 also plays a definite role in oxidative stress mitigation by minimizing ROS accumulation in the cell.

5.
J Biol Chem ; 296: 100596, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33781743

RESUMEN

Plants use a diverse set of proteins to mitigate various abiotic stresses. The intrinsically disordered protein dehydrin is an important member of this repertoire of proteins, characterized by a canonical amphipathic K-segment. It can also contain other stress-mitigating noncanonical segments-a likely reflection of the extremely diverse nature of abiotic stress encountered by plants. Among plants, the poikilohydric mosses have no inbuilt mechanism to prevent desiccation and therefore are likely to contain unique noncanonical stress-responsive motifs in their dehydrins. Here we report the recurring occurrence of a novel amphipathic helix-forming segment (D-segment: EGφφD(R/K)AKDAφ, where φ represents a hydrophobic residue) in Physcomitrella patens dehydrin (PpDHNA), a poikilohydric moss. NMR and CD spectroscopic experiments demonstrated the helix-forming tendency of the D-segment, with the shuffled D-segment as control. PpDHNA activity was shown to be size as well as D-segment dependent from in vitro, in vivo, and in planta studies using PpDHNA and various deletion mutants. Bimolecular fluorescence complementation studies showed that D-segment-mediated PpDHNA self-association is a requirement for stress abatement. The D-segment was also found to occur in two rehydrin proteins from Syntrichia ruralis, another poikilohydric plant like P. patens. Multiple occurrences of the D-segment in poikilohydric plant dehydrins/rehydrins, along with the experimental demonstration of the role of D-segment in stress abatement, implies that the D-segment mediates unique resurrection strategies, which may be employed by plant dehydrins that are capable of mitigating extreme stress.


Asunto(s)
Bryopsida/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Conformación Proteica en Hélice alfa
6.
Plant Mol Biol ; 101(1-2): 95-112, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31236845

RESUMEN

KEY MESSAGE: Sorghum glycine rich proline rich protein (SbGPRP1) exhibit antimicrobial properties and play a crucial role during biotic stress condition. Several proteins in plants build up the innate immune response system in plants which get triggered during the occurrence of biotic stress. Here we report the functional characterization of a glycine-rich proline-rich protein (SbGPRP1) from Sorghum which was previously demonstrated to be involved in abiotic stresses. Expression studies carried out with SbGPRP1 showed induced expression upon application of phytohormones like salicylic acid which might be the key in fine-tuning the expression level. Upon challenging the Sorghum plants with a compatible pathogen the SbGprp1 transcript was found to be upregulated. SbGPRP1 encodes a 197 amino acid polypeptide which was bacterially-expressed and purified for in vitro assays. Gram-positive bacteria like Bacillus and phytopathogen Rhodococcus fascians showed inhibited growth in the presence of the protein. The NPN assay, electrolytic leakage and SEM analysis showed membrane damage in bacterial cells. Ectopic expression of SbGPRP1 in tobacco plants led to enhanced tolerance towards infection caused by R. fascians. Though the N-terminal part of the protein showed disorderness the C-terminal end was quite capable of forming several α-helices which was correlated with CD spectroscopic analysis. Here, we have tried to determine the structural model for the protein and predicted the association of antimicrobial activity with the C-terminal region of the protein.


Asunto(s)
Antiinfecciosos/metabolismo , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacología , Sorghum/genética , Bacillus/efectos de los fármacos , Expresión Génica Ectópica , Glicina/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Prolina/metabolismo , Rhodococcus/efectos de los fármacos , Sorghum/inmunología , Sorghum/metabolismo , Sorghum/microbiología , Estrés Fisiológico , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/metabolismo , Nicotiana/microbiología
7.
Planta ; 248(5): 1121-1141, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30066217

RESUMEN

MAIN CONCLUSION: The promoter deletion mutants from second isoform of INO1 (gene-encoding MIPS) from Porteresia coarctata of 932 bp (pPcINO1.2.932) and 793 bp (pPcINO1.2.793) prove to be very efficient as salt/drought stress-inducible promoters, while pPcINO1.2.932 is found to be responsive to cold stress as well. The promoters of the two identified myo-inositol-1-phosphate synthase (INO1) isoforms from salt-tolerant wild rice, Porteresia coarctata (PcINO1.1 and PcINO1.2) have been compared bioinformatically with their counterparts present in the salt-sensitive rice, Oryza sativa. PcINO1.2 promoter was found to be enriched with many abiotic stress-responsive elements, like abscisic acid-responsive elements, MYC-responsive elements, MYB-binding sites, low-temperature stress-responsive elements, and heat-shock elements similar to the ones found in the conserved motifs of the promoters of salt/drought stress-inducible INO1 promoters across Kingdom Planta. To have detailed analysis on the arrangement of cis-acting regulatory elements present in PcINO1 promoters, 5' deletion mutational studies were performed in dicot model plants. Both transient as well as stable transformation methods were used to check the influence of PcINO1 promoter deletion mutants under salt and physiologically drought conditions using ß-glucuronidase as the reporter gene. The deletion mutant from the promoter of PcINO1.2 of length 932 bp (pPcINO1.2.932) was found to be significantly upregulated under drought stress and also in cold stress, while another deletion mutant, pPcINO1.2.793 (of 793 bp), was significantly upregulated under salt stress. P. coarctata being a halophytic species, the high inducibility of pPcINO1.2.932 upon exposure to low-temperature stress was an unexpected result.


Asunto(s)
Mio-Inositol-1-Fosfato Sintasa/genética , Proteínas de Plantas/genética , Poaceae/genética , Regiones Promotoras Genéticas/genética , Plantas Tolerantes a la Sal/genética , Arabidopsis/genética , Oryza/enzimología , Oryza/genética , Filogenia , Plantas Modificadas Genéticamente , Poaceae/enzimología , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal/enzimología , Nicotiana/genética
8.
Planta ; 245(1): 101-118, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27638172

RESUMEN

MAIN CONCLUSION: Dehydrins, PpDHNA and PpDHNB from Physcomitrella patens provide drought and cold tolerance while PpDHNC shows antimicrobial property suggesting different dehydrins perform separate functions in P. patens. The moss Physcomitrella patens can withstand extremes of environmental condition including abiotic stress such as dehydration, salinity, low temperature and biotic stress such as pathogen attack. Osmotic stress is inflicted under both cold and drought stress conditions where dehydrins have been found to play a significant protective role. In this study, a comparative analysis was drawn for the three dehydrins PpDHNA, PpDHNB and PpDHNC from P. patens. Our data shows that PpDHNA and PpDHNB play a major role in cellular protection during osmotic stress. PpDHNB showed several fold upregulation of the gene when P. patens was subjected to cold and osmotic stress in combination. PpDHNA and PpDHNB provide protection to enzyme lactate dehydrogenase under osmotic as well as freezing conditions. PpDHNC possesses antibacterial activity and thus may have a role in biotic stress response. Overexpression of PpDHNA, PpDHNB and PpDHNC in transgenic tobacco showed a better performance for PpDHNB with respect to cold and osmotic stress. These results suggest that specific dehydrins contribute to tolerance of mosses under different stress conditions.


Asunto(s)
Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Antiinfecciosos/farmacología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/ultraestructura , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Immunoblotting , L-Lactato Deshidrogenasa/metabolismo , Ósmosis , Proteínas de Plantas/genética , Proteínas de Plantas/farmacología , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Estrés Fisiológico/genética , Transformación Genética
9.
Protoplasma ; 253(6): 1475-1488, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26536883

RESUMEN

Plants can produce their own set of defense molecules in an attempt to survive under stressed conditions. Dehydrins play a considerable role in protecting the plants under varied stress situations. We have isolated a novel SK3 type dehydrin from Sorghum capable of protecting the enzyme lactate dehydrogenase in vitro under both cold and high temperature. This protein showed non-canonical migration in a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) due to the high hydrophilicity of the protein. The high percentage of glycine and histidine residues present in the protein sequence is responsible for the radical scavenging activity of the protein. The protein also exhibited binding affinity to metal ions owing to the histidine-rich motifs, therefore chelating the metal ions and making them unavailable to systems responsible for generation of reactive oxygen species (ROS). In the presence of specific metal ions, the protein showed reversible aggregation with certain degree of protease resistivity along with induction of secondary structures. The resistivity of the protein to degradation might be implicated in stress situations, thus leading to an increase in the shelf life of the protein. Association with metal ions like copper and zinc at a fairly low concentration increased the protective effect of the SbDHN2 protein for lactate dehydrogenase (LDH) activity to a considerable extent. The synthesis of this dehydrin in stressed plants might help the plant in rendering stress tolerance.


Asunto(s)
Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Sorghum/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Quelantes/farmacología , Dicroismo Circular , Clonación Molecular , ADN de Plantas/metabolismo , Depuradores de Radicales Libres/metabolismo , Genes de Plantas , Radical Hidroxilo/metabolismo , Immunoblotting , Iones , L-Lactato Deshidrogenasa/metabolismo , Manitol/farmacología , Metales/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Agregado de Proteínas/efectos de los fármacos , Albúmina Sérica Bovina/farmacología , Sorghum/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA