Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 13: 1285725, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023233

RESUMEN

Background: Adaptive MRI-guided radiotherapy (MRIgRT) requires accurate and efficient segmentation of organs and targets on MRI scans. Manual segmentation is time-consuming and variable, while deformable image registration (DIR)-based contour propagation may not account for large anatomical changes. Therefore, we developed and evaluated an automatic segmentation method using the nnU-net framework. Methods: The network was trained on 38 patients (76 scans) with localized prostate cancer and tested on 30 patients (60 scans) with localized prostate, metastatic prostate, or bladder cancer treated at a 1.5 T MRI-linac at our institution. The performance of the network was compared with the current clinical workflow based on DIR. The segmentation accuracy was evaluated using the Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) metrics. Results: The trained network successfully segmented all 600 structures in the test set. High similarity was obtained for most structures, with 90% of the contours having a DSC above 0.9 and 86% having an MSD below 1 mm. The largest discrepancies were found in the sigmoid and colon structures. Stratified analysis on cancer type showed that the best performance was seen in the same type of patients that the model was trained on (localized prostate). Especially in patients with bladder cancer, the performance was lower for the bladder and the surrounding organs. A complete automatic delineation workflow took approximately 1 minute. Compared with contour transfer based on the clinically used DIR algorithm, the nnU-net performed statistically better across all organs, with the most significant gain in using the nnU-net seen for organs subject to more considerable volumetric changes due to variation in the filling of the rectum, bladder, bowel, and sigmoid. Conclusion: We successfully trained and tested a network for automatically segmenting organs and targets for MRIgRT in the male pelvis region. Good test results were seen for the trained nnU-net, with test results outperforming the current clinical practice using DIR-based contour propagation at the 1.5 T MRI-linac. The trained network is sufficiently fast and accurate for clinical use in an online setting for MRIgRT. The model is provided as open-source.

2.
Acta Oncol ; 62(10): 1222-1229, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37683054

RESUMEN

BACKGROUND: Patients with stage II seminoma have traditionally been treated with photons to the retroperitoneal and iliac space, which leads to a substantial dose bath to abdominal and pelvic organs at risk (OAR). As these patients are young and with excellent prognosis, reducing dose to OAR and thereby the risk of secondary cancer is of utmost importance. We compared IMPT to opposing IMRT fields and VMAT, assessing dose to OAR and both overall and organ-specific secondary cancer risk. MATERIAL AND METHODS: A comparative treatment planning study was conducted on planning CT-scans from ten patients with stage II seminoma, treated with photons to a 'dog-leg' field with doses ranging from 20 to 25 Gy and a 10 Gy sequential boost to the metastatic lymph node(s). Photon plans were either 3-4 field IMRT (Eclipse) or 1-2 arc VMAT (Pinnacle). Proton plans used robust (5 mm; 3.5%) IMPT (Eclipse), multi field optimization with 3 posterior fields supplemented by 2 anterior fields at the level of the iliac vessels. Thirty plans were generated. Mean doses to OARs were compared for IMRT vs IMPT and VMAT vs IMPT. The risk of secondary cancer was calculated according to the model described by Schneider, using excess absolute risk (EAR, per 10,000 persons per year) for body outline, stomach, duodenum, pancreas, bowel, bladder and spinal cord. RESULTS: Mean doses to all OARs were significantly lower with IMPT except similar kidney (IMRT) and spinal cord (VMAT) doses. The relative EAR for body outline was 0.59 for IMPT/IMRT (p < .05) and 0.33 for IMPT/VMAT (p < .05). Organ specific secondary cancer risk was also lower for IMPT except for pancreas and duodenum. CONCLUSION: Proton therapy reduced radiation dose to OAR compared to both IMRT and VMAT plans, and potentially reduce the risk of secondary cancer both overall and for most OAR.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Seminoma , Neoplasias Testiculares , Humanos , Masculino , Órganos en Riesgo , Terapia de Protones/efectos adversos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada/efectos adversos , Seminoma/radioterapia , Neoplasias Testiculares/radioterapia
3.
Radiother Oncol ; 167: 165-171, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34923034

RESUMEN

BACKGROUND AND PURPOSE: With daily, MR-guided online adapted radiotherapy (MRgART) it may be possible to reduce the PTV in pelvic RT. This study investigated the potential reduction in normal tissue complication probability (NTCP) of MRgART compared to standard radiotherapy for high-risk prostate cancer. MATERIALS AND METHODS: Twenty patients treated with 78 Gy to the prostate and 56 Gy to elective pelvic lymph nodes were included. VMAT plans were generated with standard clinical PTV margins. Additionally to the planning MR, patients had three MRI scans during treatment to simulate an MRgART. A reference plan with PTV margins determined for MRgART was created per patient and adapted to each of the following MRs. Adapted plans were warped to the planning MR for dose accumulation. The standard plan was rigidly registered to each adaptation MR before it was warped to the planning MR for dose accumulation. Dosimetric impact was compared by DVH analysis and potential clinical effects were assessed by NTCP modeling. RESULTS: MRgART yielded statistically significant lower doses for the bladder wall, rectum and peritoneal cavity, compared to the standard RT, which translated into reduced median risks of urine incontinence (ΔNTCP 2.8%), urine voiding pain (ΔNTCP 2.8%) and acute gastrointestinal toxicity (ΔNTCP 17.4%). Mean population accumulated doses were as good or better for all investigated OAR when planned for MRgART as standard RT. CONCLUSION: Online adapted radiotherapy may reduce the dose to organs at risk in high-risk prostate cancer patients, due to reduced PTV margins. This potentially translates to significant reductions in the risks of acute and late adverse effects.


Asunto(s)
Neoplasias de la Próstata , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Humanos , Masculino , Órganos en Riesgo , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen/efectos adversos , Radioterapia de Intensidad Modulada/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA