Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4852, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844755

RESUMEN

A short prokaryotic Argonaute (pAgo) TIR-APAZ (SPARTA) defense system, activated by invading DNA to unleash its TIR domain for NAD(P)+ hydrolysis, was recently identified in bacteria. We report the crystal structure of SPARTA heterodimer in the absence of guide-RNA/target-ssDNA (2.66 Å) and a cryo-EM structure of the SPARTA oligomer (tetramer of heterodimers) bound to guide-RNA/target-ssDNA at nominal 3.15-3.35 Å resolution. The crystal structure provides a high-resolution view of SPARTA, revealing the APAZ domain as equivalent to the N, L1, and L2 regions of long pAgos and the MID domain containing a unique insertion (insert57). Cryo-EM structure reveals regions of the PIWI (loop10-9) and APAZ (helix αN) domains that reconfigure for nucleic-acid binding and decrypts regions/residues that reorganize to expose a positively charged pocket for higher-order assembly. The TIR domains amass in a parallel-strands arrangement for catalysis. We visualize SPARTA before and after RNA/ssDNA binding and uncover the basis of its active assembly leading to abortive infection.


Asunto(s)
Proteínas Argonautas , Microscopía por Crioelectrón , Proteínas Argonautas/metabolismo , Proteínas Argonautas/química , Proteínas Argonautas/genética , Cristalografía por Rayos X , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominios Proteicos , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/química , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Modelos Moleculares , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química , Unión Proteica
2.
Nat Struct Mol Biol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898102

RESUMEN

In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70-Ku80 heterodimer (Ku), X-ray repair cross complementing 4 (XRCC4) in complex with DNA ligase 4 (X4L4) and XRCC4-like factor (XLF) form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were recently obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at residue resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs lead to the formation of XLF and X4L4 condensates in vitro, which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome-editing strategies.

3.
Cell Host Microbe ; 32(7): 1089-1102.e10, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38889725

RESUMEN

Avian influenza A virus (IAV) surveillance in Northern California, USA, revealed unique IAV hemagglutinin (HA) genome sequences in cloacal swabs from lesser scaups. We found two closely related HA sequences in the same duck species in 2010 and 2013. Phylogenetic analyses suggest that both sequences belong to the recently discovered H19 subtype, which thus far has remained uncharacterized. We demonstrate that H19 does not bind the canonical IAV receptor sialic acid (Sia). Instead, H19 binds to the major histocompatibility complex class II (MHC class II), which facilitates viral entry. Unlike the broad MHC class II specificity of H17 and H18 from bat IAV, H19 exhibits a species-specific MHC class II usage that suggests a limited host range and zoonotic potential. Using cell lines overexpressing MHC class II, we rescued recombinant H19 IAV. We solved the H19 crystal structure and identified residues within the putative Sia receptor binding site (RBS) that impede Sia-dependent entry.


Asunto(s)
Patos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Antígenos de Histocompatibilidad Clase II , Virus de la Influenza A , Filogenia , Receptores Virales , Animales , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Receptores Virales/metabolismo , Receptores Virales/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Patos/virología , Humanos , Internalización del Virus , Gripe Aviar/virología , Sitios de Unión , Unión Proteica , Cristalografía por Rayos X , Línea Celular , Ácido N-Acetilneuramínico/metabolismo , Especificidad del Huésped , Especificidad de la Especie
4.
Nat Struct Mol Biol ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720088

RESUMEN

Rev1-Polζ-dependent translesion synthesis (TLS) of DNA is crucial for maintaining genome integrity. To elucidate the mechanism by which the two polymerases cooperate in TLS, we determined the cryogenic electron microscopic structure of the Saccharomyces cerevisiae Rev1-Polζ holocomplex in the act of DNA synthesis (3.53 Å). We discovered that a composite N-helix-BRCT module in Rev1 is the keystone of Rev1-Polζ cooperativity, interacting directly with the DNA template-primer and with the Rev3 catalytic subunit of Polζ. The module is positioned akin to the polymerase-associated domain in Y-family TLS polymerases and is set ideally to interact with PCNA. We delineate the full extent of interactions that the carboxy-terminal domain of Rev1 makes with Polζ and identify potential new druggable sites to suppress chemoresistance from first-line chemotherapeutics. Collectively, our results provide fundamental new insights into the mechanism of cooperativity between Rev1 and Polζ in TLS.

5.
bioRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38798402

RESUMEN

Because most DNA-binding transcription factors (dbTFs), including the architectural regulator CTCF, bind RNA and exhibit di-/multimerization, a central conundrum is whether these distinct properties are regulated post-transcriptionally to modulate transcriptional programs. Here, investigating stress-dependent activation of SIRT1, encoding an evolutionarily-conserved protein deacetylase, we show that induced phosphorylation of CTCF acts as a rheostat to permit CTCF occupancy of low-affinity promoter DNA sites to precisely the levels necessary. This CTCF recruitment to the SIRT1 promoter is eliciting a cardioprotective cardiomyocyte transcriptional activation program and provides resilience against the stress of the beating heart in vivo . Mice harboring a mutation in the conserved low-affinity CTCF promoter binding site exhibit an altered, cardiomyocyte-specific transcriptional program and a systolic heart failure phenotype. This transcriptional role for CTCF reveals that a covalent dbTF modification regulating signal-dependent transcription serves as a previously unsuspected component of the oxidative stress response.

6.
Nat Struct Mol Biol ; 31(5): 767-776, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321146

RESUMEN

The bacterial cyclic oligonucleotide-based antiphage signaling system (CBASS) is similar to the cGAS-STING system in humans, containing an enzyme that synthesizes a cyclic nucleotide on viral infection and an effector that senses the second messenger for the antiviral response. Cap5, containing a SAVED domain coupled to an HNH DNA endonuclease domain, is the most abundant CBASS effector, yet the mechanism by which it becomes activated for cell killing remains unknown. We present here high-resolution structures of full-length Cap5 from Pseudomonas syringae (Ps) with second messengers. The key to PsCap5 activation is a dimer-to-tetramer transition, whereby the binding of second messenger to dimer triggers an open-to-closed transformation of the SAVED domains, furnishing a surface for assembly of the tetramer. This movement propagates to the HNH domains, juxtaposing and converting two HNH domains into states for DNA destruction. These results show how Cap5 effects bacterial cell suicide and we provide proof-in-principle data that the CBASS can be extrinsically activated to limit bacterial infections.


Asunto(s)
Proteínas Bacterianas , Nucleótidos Cíclicos , Pseudomonas syringae , Nucleótidos Cíclicos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Modelos Moleculares , Cristalografía por Rayos X , Sistemas de Mensajero Secundario , Multimerización de Proteína , Endonucleasas/metabolismo , Endonucleasas/química , Transducción de Señal , Humanos
7.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328099

RESUMEN

Burkholderia cenocepacia is an opportunistic and infective bacterium containing an orphan DNA methyltransferase (M.BceJIV) with roles in regulating gene expression and motility of the bacterium. M.BceJIV recognizes a GTWWAC motif (where W can be an adenine or a thymine) and methylates the N6 of the adenine at the fifth base position (GTWWAC). Here, we present a high-resolution crystal structure of M.BceJIV/DNA/sinefungin ternary complex and allied biochemical, computational, and thermodynamic analyses. Remarkably, the structure shows not one, but two DNA substrates bound to the M.BceJIV dimer, wherein each monomer contributes to the recognition of two recognition sequences. This unexpected mode of DNA binding and methylation has not been observed previously and sets a new precedent for a DNA methyltransferase. We also show that methylation at two recognition sequences occurs independently, and that GTWWAC motifs are enriched in intergenic regions of a strain of B. cenocepacia's genome. We further computationally assess the interactions underlying the affinities of different ligands (SAM, SAH, and sinefungin) for M.BceJIV, as a step towards developing selective inhibitors for limiting B. cenocepacia infection.

8.
J Med Chem ; 66(23): 16168-16186, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38019706

RESUMEN

As a core chromatin-regulatory scaffolding protein, WDR5 mediates numerous protein-protein interactions (PPIs) with other partner oncoproteins. However, small-molecule inhibitors that block these PPIs exert limited cell-killing effects. Here, we report structure-activity relationship studies in pancreatic ductal adenocarcinoma (PDAC) cells that led to the discovery of several WDR5 proteolysis-targeting chimer (PROTAC) degraders, including 11 (MS132), a highly potent and selective von Hippel-Lindau (VHL)-recruiting WDR5 degrader, which displayed positive binding cooperativity between WDR5 and VHL, effectively inhibited proliferation in PDAC cells, and was bioavailable in mice and 25, a cereblon (CRBN)-recruiting WDR5 degrader, which selectively degraded WDR5 over the CRBN neo-substrate IKZF1. Furthermore, by conducting site-directed mutagenesis studies, we determined that WDR5 K296, but not K32, was involved in the PROTAC-induced WDR5 degradation. Collectively, these studies resulted in a highly effective WDR5 degrader, which could be a potential therapeutic for pancreatic cancer and several potentially useful tool compounds.


Asunto(s)
Neoplasias Pancreáticas , Quimera Dirigida a la Proteólisis , Animales , Ratones , Proteolisis , Relación Estructura-Actividad , Neoplasias Pancreáticas/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/metabolismo
9.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745538

RESUMEN

The continual pressure of invading DNA has led bacteria to develop numerous immune systems, including a short prokaryotic Argonaute (pAgo) TIR-APAZ system (SPARTA) that is activated by invading DNA to unleash its TIR domain for NAD(P)+ hydrolysis. To gain a molecular understanding of this activation process, we resolved a crystal structure of SPARTA heterodimer in the absence of guide RNA/target ssDNA at 2.66Å resolution and a cryo-EM structure of the SPARTA oligomer (tetramer of heterodimers) bound to guide RNA/target ssDNA at nominal 3.15-3.35Å resolution. The crystal structure provides a high-resolution view of the TIR-APAZ protein and the MID-PIWI domains of short pAgo - wherein, the APAZ domain emerges as equivalent to the N, L1 and L2 regions of long pAgos and the MID domain has a unique insertion (insert57). A comparison to cryo-EM structure reveals regions of the PIWI (loop10-9) and APAZ (helix αN) domains that reconfigure to relieve auto-inhibition to permit nucleic acid binding and transition to an active oligomer. Oligomerization is accompanied by the nucleation of the TIR domains in a parallel-strands arrangement for catalysis. Together, the structures provide a visualization of SPARTA before and after RNA/ssDNA binding and reveal the basis of SPARTA's active assembly leading to NAD(P)+ degradation and abortive infection.

10.
bioRxiv ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37503201

RESUMEN

In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70/80 heterodimer (Ku), XRCC4 in complex with DNA Ligase 4 (X4L4), and XLF form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) have recently been obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here, we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at atomic resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs led to the formation of XLF and X4L4 condensates in vitro which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome editing strategies.

11.
PLoS Pathog ; 19(7): e1011546, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37523415

RESUMEN

The RNA N7-methyltransferase (MTase) activity of SARS-CoV-2's nsp14 protein is essential for viral replication and is a target for the development of new antivirals. Nsp14 uses S-adenosyl methionine (SAM) as the methyl donor to cap the 5' end of the SARS-CoV-2 mRNA and generates S-adenosyl homocysteine (SAH) as the reaction byproduct. Due to the central role of histone MTases in cancer, many SAM/SAH analogs with properties of cell permeability have recently been developed for the inhibition of these MTases. We have succeeded in identifying two such compounds (SGC0946 and SGC8158) that display significant antiviral activity and bind to the SARS-CoV-2 nsp14 N7-MTase core. Unexpectedly, crystal structures of SGC0946 and SGC8158 with the SARS-CoV-2 nsp14 N7-MTase core identify them as bi-substrate inhibitors of the viral MTase, co-occupying both the SAM and RNA binding sites; positing novel features that can be derivatized for increased potency and selectivity for SARS-CoV-2 nsp14. Taken together, the high-resolution structures and the accompanying biophysical and viral replication data provide a new avenue for developing analogs of SGC0946 and SGC8158 as antivirals.


Asunto(s)
COVID-19 , Metiltransferasas , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Antivirales/farmacología , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , S-Adenosilmetionina/metabolismo , ARN , ARN Viral/genética , ARN Viral/metabolismo , Exorribonucleasas/genética , N-Metiltransferasa de Histona-Lisina , Proteína-Arginina N-Metiltransferasas
12.
Nat Struct Mol Biol ; 30(2): 148-158, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36747093

RESUMEN

Enhancer activation serves as the main mechanism regulating signal-dependent transcriptional programs, ensuring cellular plasticity, yet central questions persist regarding their mechanism of activation. Here, by successfully mapping topoisomerase I-DNA covalent complexes genome-wide, we find that most, if not all, acutely activated enhancers, including those induced by 17ß-estradiol, dihydrotestosterone, tumor necrosis factor alpha and neuronal depolarization, are hotspots for topoisomerase I-DNA covalent complexes, functioning as epigenomic signatures read by the classic DNA damage sensor protein, Ku70. Ku70 in turn nucleates a heterochromatin protein 1 gamma (HP1γ)-mediator subunit Med26 complex to facilitate acute, but not chronic, transcriptional activation programs. Together, our data uncover a broad, unappreciated transcriptional code, required for most, if not all, acute signal-dependent enhancer activation events in both mitotic and postmitotic cells.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Elementos de Facilitación Genéticos , ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Autoantígeno Ku/metabolismo
13.
Nat Struct Mol Biol ; 29(9): 850-853, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36075969

RESUMEN

Emergence of SARS-CoV-2 coronavirus has led to millions of deaths globally. We present three high-resolution crystal structures of the SARS-CoV-2 nsp14 N7-methyltransferase core bound to S-adenosylmethionine (1.62 Å), S-adenosylhomocysteine (1.55 Å) and sinefungin (1.41 Å). We identify features of the methyltransferase core that are crucial for the development of antivirals and show SAH as the best scaffold for the design of antivirals against SARS-CoV-2 and other pathogenic coronaviruses.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Humanos , Metiltransferasas/metabolismo , S-Adenosilhomocisteína , S-Adenosilmetionina/metabolismo , Proteínas no Estructurales Virales/química
14.
Oncogene ; 41(24): 3328-3340, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35525905

RESUMEN

WD repeat domain 5 (WDR5), an integral component of the MLL/KMT2A lysine methyltransferase complex, is critically involved in oncogenesis and represents an attractive onco-target. Inhibitors targeting protein-protein interactions (PPIs) between WDR5 and its binding partners, however, do not inhibit all of WDR5-mediated oncogenic functions and exert rather limited antitumor effects. Here, we report a cereblon (CRBN)-recruiting proteolysis targeting chimera (PROTAC) of WDR5, MS40, which selectively degrades WDR5 and the well-established neo-substrates of immunomodulatory drugs (IMiDs):CRBN, the Ikaros zinc finger (IKZF) transcription factors IKZF1 and IKZF3. MS40-induced WDR5 degradation caused disassociation of the MLL/KMT2A complex off chromatin, resulting in decreased H3K4me2. Transcriptomic profiling revealed that targets of both WDR5 and IMiDs:CRBN were significantly repressed by treatment of MS40. In MLL-rearranged leukemias, which exhibit IKZF1 high expression and dependency, co-suppression of WDR5 and Ikaros by MS40 is superior in suppressing oncogenesis to the WDR5 PPI inhibitor, to MS40's non-PROTAC analog controls (MS40N1 and MS40N2, which do not bind CRBN and WDR5, respectively), and to a matched VHL-based WDR5 PROTAC (MS169, which degrades WDR5 but not Ikaros). MS40 suppressed the growth of primary leukemia patient cells in vitro and patient-derived xenografts in vivo. Thus, dual degradation of WDR5 and Ikaros is a promising anti-cancer strategy.


Asunto(s)
Factor de Transcripción Ikaros , Péptidos y Proteínas de Señalización Intracelular , Ubiquitina-Proteína Ligasas , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos/farmacología , Carcinogénesis , Factor de Transcripción Ikaros/antagonistas & inhibidores , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Res Sq ; 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35291302

RESUMEN

Emergence of SARS-CoV-2 coronavirus has led to millions of deaths globally. We present three high-resolution crystal structures of the SARS-CoV-2 nsp14 N7-methyltransferase core bound to S-adenosylmethionine (SAM; 1.62Å), S-adenosylhomocysteine (SAH; 1.55Å) and Sinefungin (SFG; 1.41Å). We identify features of the methyltransferase core that are crucial for the development of antivirals and show SAH as the best scaffold for the design of antivirals against SARS-CoV-2 and other pathogenic coronaviruses.

16.
Nat Commun ; 13(1): 1050, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217661

RESUMEN

The B-family multi-subunit DNA polymerase ζ (Polζ) is important for translesion DNA synthesis (TLS) during replication, due to its ability to extend synthesis past nucleotides opposite DNA lesions and mismatched base pairs. We present a cryo-EM structure of Saccharomyces cerevisiae Polζ with an A:C mismatch at the primer terminus. The structure shows how the Polζ active site responds to the mismatched duplex DNA distortion, including the loosening of key protein-DNA interactions and a fingers domain in an "open" conformation, while the incoming dCTP is still able to bind for the extension reaction. The structure of the mismatched DNA-Polζ ternary complex reveals insights into mechanisms that either stall or favor continued DNA synthesis in eukaryotes.


Asunto(s)
Disparidad de Par Base , Proteínas de Saccharomyces cerevisiae , Microscopía por Crioelectrón , ADN , Daño del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Sci Transl Med ; 13(613): eabj1578, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34586829

RESUMEN

Interactions between WD40 repeat domain protein 5 (WDR5) and its various partners such as mixed lineage leukemia (MLL) and c-MYC are essential for sustaining oncogenesis in human cancers. However, inhibitors that block protein-protein interactions (PPIs) between WDR5 and its binding partners exhibit modest cancer cell killing effects and lack in vivo efficacy. Here, we present pharmacological degradation of WDR5 as a promising therapeutic strategy for treating WDR5-dependent tumors and report two high-resolution crystal structures of WDR5-degrader-E3 ligase ternary complexes. We identified an effective WDR5 degrader via structure-based design and demonstrated its in vitro and in vivo antitumor activities. On the basis of the crystal structure of an initial WDR5 degrader in complex with WDR5 and the E3 ligase von Hippel­Lindau (VHL), we designed a WDR5 degrader, MS67, and demonstrated the high cooperativity of MS67 binding to WDR5 and VHL by another ternary complex structure and biophysical characterization. MS67 potently and selectively depleted WDR5 and was more effective than WDR5 PPI inhibitors in suppressing transcription of WDR5-regulated genes, decreasing the chromatin-bound fraction of MLL complex components and c-MYC, and inhibiting the proliferation of cancer cells. In addition, MS67 suppressed malignant growth of MLL-rearranged acute myeloid leukemia patient cells in vitro and in vivo and was well tolerated in vivo. Collectively, our results demonstrate that structure-based design can be an effective strategy to identify highly active degraders and suggest that pharmacological degradation of WDR5 might be a promising treatment for WDR5-dependent cancers.


Asunto(s)
Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Animales , N-Metiltransferasa de Histona-Lisina , Humanos , Péptidos y Proteínas de Señalización Intracelular , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Ratones
18.
Nat Commun ; 12(1): 4671, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344863

RESUMEN

Triple negative breast cancer (TNBC) remains challenging because of heterogeneous responses to chemotherapy. Incomplete response is associated with a greater risk of metastatic progression. Therefore, treatments that target chemotherapy-resistant TNBC and enhance chemosensitivity would improve outcomes for these high-risk patients. Breast cancer stem cell-like cells (BCSCs) have been proposed to represent a chemotherapy-resistant subpopulation responsible for tumor initiation, progression and metastases. Targeting this population could lead to improved TNBC disease control. Here, we describe a novel multi-kinase inhibitor, 108600, that targets the TNBC BCSC population. 108600 treatment suppresses growth, colony and mammosphere forming capacity of BCSCs and induces G2M arrest and apoptosis of TNBC cells. In vivo, 108600 treatment of mice bearing triple negative tumors results in the induction of apoptosis and overcomes chemotherapy resistance. Finally, treatment with 108600 and chemotherapy suppresses growth of pre-established TNBC metastases, providing additional support for the clinical translation of this agent to clinical trials.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Nitrobencenos/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Tiazinas/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Células Madre Neoplásicas/patología , Nitrobencenos/química , Nitrobencenos/farmacología , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , Tiazinas/química , Tiazinas/farmacología , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas DyrK
19.
Dev Cell ; 56(15): 2207-2222.e7, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34256011

RESUMEN

Cells counter DNA damage through repair or apoptosis, yet a direct mechanism for this choice has remained elusive. When facing interstrand crosslinks (ICLs), the ICL-repair protein FANCI heterodimerizes with FANCD2 to initiate ICL excision. We found that FANCI alternatively interacts with a pro-apoptotic factor, PIDD1, to enable PIDDosome (PIDD1-RAIDD-caspase-2) formation and apoptotic death. FANCI switches from FANCD2/repair to PIDD1/apoptosis signaling in the event of ICL-repair failure. Specifically, removing key endonucleases downstream of FANCI/FANCD2, increasing ICL levels, or allowing damaged cells into mitosis (when repair is suppressed) all suffice for switching. Reciprocally, apoptosis-committed FANCI reverts from PIDD1 to FANCD2 after a failed attempt to assemble the PIDDosome. Monoubiquitination and deubiquitination at FANCI K523 impact interactor selection. These data unveil a repair-or-apoptosis switch in eukaryotes. Beyond ensuring the removal of unrepaired genomes, the switch's bidirectionality reveals that damaged cells can offset apoptotic defects via de novo attempts at lesion repair.


Asunto(s)
Apoptosis/fisiología , Reparación del ADN/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Animales , Proteína Adaptadora de Señalización CRADD/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Células HeLa , Humanos , Ubiquitinación , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
20.
Nature ; 595(7867): 444-449, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34194047

RESUMEN

The size of the transcriptional program of long non-coding RNAs in the mammalian genome has engendered discussions about their biological roles1, particularly the promoter antisense (PAS) transcripts2,3. Here we report the development of an assay-referred to as chromatin isolation by RNA-Cas13a complex-to quantitatively detect the distribution of RNA in the genome. The assay revealed that PAS RNAs serve as a key gatekeeper of a broad transcriptional pause release program, based on decommissioning the 7SK small nuclear RNA-dependent inhibitory P-TEFb complex. Induction of PAS RNAs by liganded ERα led to a significant loss of H3K9me3 and the release of basally recruited HP1α and KAP1 on activated target gene promoters. This release was due to PAS RNA-dependent recruitment of H3K9me3 demethylases, which required interactions with a compact stem-loop structure in the PAS RNAs, an apparent feature of similarly regulated PAS RNAs. Activation of the ERα-bound MegaTrans enhancer, which is essential for robust pause release, required the recruitment of phosphorylated KAP1, with its transfer to the cognate promoters permitting 17ß-oestradiol-induced pause release and activation of the target gene. This study reveals a mechanism, based on RNA structure, that mediates the function of PAS RNAs in gene regulation.


Asunto(s)
Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , ARN sin Sentido/química , ARN sin Sentido/genética , Activación Transcripcional/genética , Línea Celular , Homólogo de la Proteína Chromobox 5/metabolismo , Proteína Sustrato Asociada a CrK , Receptor alfa de Estrógeno/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ligandos , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/metabolismo , Estabilidad del ARN , Proteína 28 que Contiene Motivos Tripartito/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...