Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chempluschem ; : e202400160, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39149961

RESUMEN

Affordable nitrogen and fluorine co-doped carbon nanostructure was prepared from the hazardous industrial waste of edible oil refinery, spent bleaching earth (SBE), and used as raw material for obtaining high-performance non-noble metal bifunctional oxygen electrocatalysts. Waste SBE contains 35 % residue non-saturated oil as a carbon source and the assistance of montmorillonite (MMT) as the template. This study converts waste SBE into a fluorine-doped carbon nanostructure through a pyrolysis process followed by removing the aluminosilicate layers of the MMT by HF etching. Furthermore, the impregnation of the support with Co and Fe nitrates readily gives rise to N, F co-doped carbon (NFC) electrocatalysts, as confirmed by XPS analysis. Electrochemical results evidenced that the Co-NFC catalyst proved to be a valuable bifunctional competitor for oxygen reduction reaction and oxygen evolution reaction in alkaline media, showing activity in both reactions and superior stability compared with the Fe-NFC catalyst in accelerated tests. This work offers a straightforward, economical, and eco-friendly strategy for designing N, F co-doped carbon-based electrocatalysts for oxygen reactions in electrochemical devices.

2.
Sci Rep ; 14(1): 14497, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914657

RESUMEN

World production of dyes is estimated at more than 800,000 t·yr-1. The purpose of this research falls within the scope of the choice of an effective, local, and inexpensive adsorbent to remove dyes from wastewater. Adsorptive elimination of dyes by commonly accessible adsorbents is inefficient. The metal-organic frameworks (MOFs) are an important class of porous materials offering exceptional properties as adsorbents by improving separation efficiency compared to existing commercial adsorbents. However, its powder form limits its applications. One way to overcome this problem is to trap them in a flexible matrix to form a hierarchical porous composite. Therefore, in this work, we prepared MIL-100 (Fe) embedded in a cellulose matrix named MIL-100(Fe)/Cell, and used it as an adsorbent of methylene blue (MB) dye. According to the BET analysis, the specific surface area of the synthesized MOF is 294 m2/g which is related to the presence of the cellulose as efficient and green support. The structure of this composite is approximately hexagonal. Adsorption was studied as a function of contact time, adsorbent mass and pollutant load (concentration), and pH, and the effect of each of them on absorption efficiency was optimized. The MIL-100(Fe)/Cell was capable of removing 98.94% of MB dye with an initial concentration of 150 mg/L within 10 min at pH = 6.5 and room temperature. The obtained maximum adsorption capacity was 384.615 mg/g. The adsorption isotherm is consistent with the Langmuir models. The mechanism of MB adsorption proceeds through п-п and electrostatic interactions.

3.
Int J Biol Macromol ; 253(Pt 6): 127432, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37838123

RESUMEN

Dye and textile industries are one of the main causes of water pollution and put the environment and health of society at risk. Developing new materials to decontaminate industrial waste effluents containing dyes as pollutants is challenging due to numerous issues, including tailoring recyclable and biodegradable agents. This study focuses on applying an advanced oxidation process, electro-Fenton for the treatment of dye-containing wastewater using agar-functionalized graphene oxide-immobilized copper ferrite aerogel. The objective is therefore to determine the optimal conditions for the degradation of model pollutants methylene blue (MB). MB was oxidized and degraded through the dark-Fenton process using Agar@GO-CuFe2O4 as a new biobased catalyst. The effect of the operating parameters was then evaluated to determine the optimal conditions. The degradation process was screened for different initial concentrations of dye solution between 10 and 150 mg/l, a volume range of H2O2 between 0.5 and 2.5 ml, and different pH from 2 to 7. The results show that 99.89 % of the MB with the initial concentration of 150 ppm was degraded by 20 mg of the catalyst and 2 ml of H2O2 (30 % W/W) at 40 °C and pH = 6. Pseudo-second-order kinetics satisfactorily describes the experimental data. SYNOPSIS: The prepared catalyst can be applied to oxidize industrial effluents before they are released into the environment.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Agar , Cobre , Hierro , Peróxido de Hidrógeno , Estrés Oxidativo
4.
Int J Biol Macromol ; 207: 9-22, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35181332

RESUMEN

In this study, a three-dimensional composite scaffold is proposed consisting of polylactic acid and spray dried glass-ceramic microparticles (SGCMs). The compositional and structural characterization showed that the obtained spray dried powder formed as glass-ceramic (GC) with a completely interconnected porosity structure. Before direct printing of scaffolds, the rheological behavior of polylactic acid (PLA) and PLA-GC (PLA matrix containing SGCMs) inks were investigated. The PLA-GC composite ink represents sharper shear-thinning behavior and higher loss and storage modulus comparable to that of pure PLA. Microscopic observations and elemental mapping elements showed that 3D scaffolds had well-defined interconnected porosity and uniform distribution of the glass-ceramic particles. Mechanical tests indicated that compression strength is dependent on the scaffold porosity and the presence of SGCMs. Apatite formation evaluation besides ion release study showed better biomineralization capacity of PLA-GC scaffolds, as larger and denser sediments formed on the PLA-GC scaffolds after 7- and 14-day soaking. The preliminary cell response was studied with primary human mesenchymal stem cells (hMSCs) and revealed that SGCMs improved cell adhesion and viability and ALP activity. The appropriate combination of the biomaterials/methods to fabricate 3D porous constructs and their available bioactivity and biocompatibility, both being important characteristics for bone tissue engineering applications.


Asunto(s)
Poliésteres , Andamios del Tejido , Cerámica/química , Humanos , Poliésteres/química , Porosidad , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
5.
Recent Pat Biotechnol ; 12(2): 126-133, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28707577

RESUMEN

BACKGROUND: Glucose sensors have been extensively researched in patent studies and manufactured a tool for clinical diabetes diagnosis. Although some kinds of electrochemical enzymatic glucose sensors have been commercially successful, there is still room for improvement, in selectivity and reliability of these sensors. Because of the intrinsic disadvantages of enzymes, such as high fabrication cost and poor stability, non-enzymatic glucose sensors have recently been promoted as next generation diagnostic tool due to their relatively low cost, high stability, prompt response, and accuracy. OBJECTIVE: In this research, a novel free standing and binder free non-enzymatic electrochemical sensor was manufactured using in situ grown copper (Cu) and cobalt (Co) on a silicon (Si) substrate. METHODS: Scanning High-Energy Electron Diffraction (SHEED) and Edward deposition methods were used to synthesise the sensors. RESULTS: Morphological observations showed that Cu and Co homogeneously formed nanorod-like shapes over the Si substrate. The elemental composition and structure of the prepared sensors were identified by Reflection High-Energy Electron Diffraction (RHEED). In terms of electrochemical properties, for the enzyme-free glucose sensor, voltammograms showed that the peak currents increased when the glucose solution was injected into the electrolytic cell. The electrical relation of voltage versus current was linear, as shown in the experimental data. Another effective parameter changed the magnetic field; and the linear behaviour of the electrical resistance of Co remained unaltered. CONCLUSION: In the optimum annealing temperature, where the magnetic field increased, the properties of the samples remained constant. In other words, in the selected annealing temperature, resistance and stability of the layers increased in a significant manner.


Asunto(s)
Técnicas Biosensibles , Cobalto/química , Cobre/química , Glucosa/análisis , Nanotubos/química , Catálisis , Técnicas Electroquímicas , Electrodos , Microscopía de Fuerza Atómica , Oxidación-Reducción , Patentes como Asunto , Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...