Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 6132, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675200

RESUMEN

Studies of mechanical signalling are typically performed by comparing cells cultured on soft and stiff hydrogel-based substrates. However, it is challenging to independently and robustly control both substrate stiffness and extracellular matrix tethering to substrates, making matrix tethering a potentially confounding variable in mechanical signalling investigations. Moreover, unstable matrix tethering can lead to poor cell attachment and weak engagement of cell adhesions. To address this, we developed StemBond hydrogels, a hydrogel in which matrix tethering is robust and can be varied independently of stiffness. We validate StemBond hydrogels by showing that they provide an optimal system for culturing mouse and human pluripotent stem cells. We further show how soft StemBond hydrogels modulate stem cell function, partly through stiffness-sensitive ERK signalling. Our findings underline how substrate mechanics impact mechanosensitive signalling pathways regulating self-renewal and differentiation, indicating that optimising the complete mechanical microenvironment will offer greater control over stem cell fate specification.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Matriz Extracelular/química , Hidrogeles/química , Células Madre Pluripotentes/citología , Animales , Fenómenos Biomecánicos , Adhesión Celular , Diferenciación Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Mecanotransducción Celular , Ratones , Células Madre Pluripotentes/química , Células Madre Pluripotentes/metabolismo
2.
Lab Chip ; 20(14): 2580-2591, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32573646

RESUMEN

Combining live imaging with the ability to retrieve individual cells of interest remains a technical challenge. Combining imaging with precise cell retrieval is of particular interest when studying highly dynamic or transient, asynchronous, or heterogeneous cell biological and developmental processes. Here, we present a method to encapsulate live cells in a 3D hydrogel matrix, via hydrogel bead compartmentalisation. Using a small-scale screen, we optimised matrix conditions for the culture and multilineage differentiation of mouse embryonic stem cells. Moreover, we designed a custom microfluidic platform that is compatible with live imaging. With this platform we can long-term culture and subsequently extract individual cells-in-beads by media flow only, obviating the need for enzymatic cell removal from the platform. Specific beads may be extracted from the platform in isolation, without disrupting the adjacent beads. We show that we can differentiate mouse embryonic stem cells, monitor reporter expression by live imaging, and retrieve individual beads for functional assays, correlating reporter expression with functional response. Overall, we present a highly flexible 3D cell encapsulation and microfluidic platform that enables both monitoring of cellular dynamics and retrieval for molecular and functional assays.


Asunto(s)
Técnicas de Cultivo de Célula , Microfluídica , Animales , Diferenciación Celular , Células Cultivadas , Células Clonales , Ratones
3.
Nature ; 573(7772): 130-134, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31413369

RESUMEN

Ageing causes a decline in tissue regeneration owing to a loss of function of adult stem cell and progenitor cell populations1. One example is the deterioration of the regenerative capacity of the widespread and abundant population of central nervous system (CNS) multipotent stem cells known as oligodendrocyte progenitor cells (OPCs)2. A relatively overlooked potential source of this loss of function is the stem cell 'niche'-a set of cell-extrinsic cues that include chemical and mechanical signals3,4. Here we show that the OPC microenvironment stiffens with age, and that this mechanical change is sufficient to cause age-related loss of function of OPCs. Using biological and synthetic scaffolds to mimic the stiffness of young brains, we find that isolated aged OPCs cultured on these scaffolds are molecularly and functionally rejuvenated. When we disrupt mechanical signalling, the proliferation and differentiation rates of OPCs are increased. We identify the mechanoresponsive ion channel PIEZO1 as a key mediator of OPC mechanical signalling. Inhibiting PIEZO1 overrides mechanical signals in vivo and allows OPCs to maintain activity in the ageing CNS. We also show that PIEZO1 is important in regulating cell number during CNS development. Thus we show that tissue stiffness is a crucial regulator of ageing in OPCs, and provide insights into how the function of adult stem and progenitor cells changes with age. Our findings could be important not only for the development of regenerative therapies, but also for understanding the ageing process itself.


Asunto(s)
Células Madre Adultas/patología , Envejecimiento/patología , Sistema Nervioso Central/patología , Células Madre Multipotentes/patología , Nicho de Células Madre , Animales , Animales Recién Nacidos , Recuento de Células , Matriz Extracelular/patología , Femenino , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Oligodendroglía/patología , Ratas , Nicho de Células Madre/fisiología
5.
Small ; 15(5): e1804576, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30570812

RESUMEN

Developmental cell biology requires technologies in which the fate of single cells is followed over extended time periods, to monitor and understand the processes of self-renewal, differentiation, and reprogramming. A workflow is presented, in which single cells are encapsulated into droplets (Ø: 80 µm, volume: ≈270 pL) and the droplet compartment is later converted to a hydrogel bead. After on-chip de-emulsification by electrocoalescence, these 3D scaffolds are subsequently arrayed on a chip for long-term perfusion culture to facilitate continuous cell imaging over 68 h. Here, the response of murine embryonic stem cells to different growth media, 2i and N2B27, is studied, showing that the exit from pluripotency can be monitored by fluorescence time-lapse microscopy, by immunostaining and by reverse-transcription and quantitative PCR (RT-qPCR). The defined 3D environment emulates the natural context of cell growth (e.g., in tissue) and enables the study of cell development in various matrices. The large scale of cell cultivation (in 2000 beads in parallel) may reveal infrequent events that remain undetected in lower throughput or ensemble studies. This platform will help to gain qualitative and quantitative mechanistic insight into the role of external factors on cell behavior.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Hidrogeles/farmacología , Microesferas , Células Madre Embrionarias de Ratones/citología , Óptica y Fotónica/métodos , Perfusión , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Fenotipo , Reología , Factores de Tiempo
6.
J Vis Exp ; (95): 52049, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25650991

RESUMEN

The repair and regeneration of skeletal muscle requires the action of satellite cells, which are the resident muscle stem cells. These can be isolated from human muscle biopsy samples using enzymatic digestion and their myogenic properties studied in culture. Quantitatively, the two main adherent cell types obtained from enzymatic digestion are: (i) the satellite cells (termed myogenic cells or muscle precursor cells), identified initially as CD56(+) and later as CD56(+)/desmin(+) cells and (ii) muscle-derived fibroblasts, identified as CD56(-) and TE-7(+). Fibroblasts proliferate very efficiently in culture and in mixed cell populations these cells may overrun myogenic cells to dominate the culture. The isolation and purification of different cell types from human muscle is thus an important methodological consideration when trying to investigate the innate behavior of either cell type in culture. Here we describe a system of sorting based on the gentle enzymatic digestion of cells using collagenase and dispase followed by magnetic activated cell sorting (MACS) which gives both a high purity (>95% myogenic cells) and good yield (~2.8 x 10(6) ± 8.87 x 10(5) cells/g tissue after 7 days in vitro) for experiments in culture. This approach is based on incubating the mixed muscle-derived cell population with magnetic microbeads beads conjugated to an antibody against CD56 and then passing cells though a magnetic field. CD56(+) cells bound to microbeads are retained by the field whereas CD56(-) cells pass unimpeded through the column. Cell suspensions from any stage of the sorting process can be plated and cultured. Following a given intervention, cell morphology, and the expression and localization of proteins including nuclear transcription factors can be quantified using immunofluorescent labeling with specific antibodies and an image processing and analysis package.


Asunto(s)
Fibroblastos/citología , Fibroblastos/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Diferenciación Celular/fisiología , Separación Celular/métodos , Células Cultivadas , Desmina/metabolismo , Humanos , Inmunohistoquímica
7.
Front Mol Neurosci ; 7: 87, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25426020

RESUMEN

Unbiased "omics" techniques, such as next generation RNA-sequencing, can provide entirely novel insights into biological systems. However, cellular heterogeneity presents a significant barrier to analysis and interpretation of these datasets. The neurons of the dorsal root ganglia (DRG) are an important model for studies of neuronal injury, regeneration and pain. The majority of investigators utilize a dissociated preparation of whole ganglia when studying cellular and molecular function. We demonstrate that the standard methods for producing these preparations gives a 10%-neuronal mixture of cells, with the remainder of cells constituting satellite glia and other non-neuronal cell types. Using a novel application of magnetic purification, we consistently obtain over 95% pure, viable neurons from adult tissue, significantly enriched for small diameter nociceptors expressing the voltage gated ion channel Nav1.8. Using genome-wide RNA-sequencing we compare the currently used (10% neuronal) and pure (95% nociceptor) preparations and find 920 genes enriched. This gives an unprecedented insight into the molecular composition of small nociceptive neurons in the DRG, potentially altering the interpretation of previous studies performed at the tissue level, and indicating a number of novel markers of this widely-studied population of cells. We anticipate that the ease of use, affordability and speed of this technique will see it become widely adopted, delivering a greatly improved capacity to study the roles of nociceptors in health and disease.

8.
J Cell Sci ; 126(Pt 24): 5610-25, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24101731

RESUMEN

We characterised the adherent cell types isolated from human skeletal muscle by enzymatic digestion, and demonstrated that even at 72 hours after isolation these cultures consisted predominantly of myogenic cells (CD56(+), desmin(+)) and fibroblasts (TE-7(+), collagen VI(+), PDGFRα(+), vimentin(+), fibronectin(+)). To evaluate the behaviour of the cell types obtained, we optimised a double immuno-magnetic cell-sorting method for the separation of myogenic cells from fibroblasts. This procedure gave purities of >96% for myogenic (CD56(+), desmin(+)) cells. The CD56(-) fraction obtained from the first sort was highly enriched in TE-7(+) fibroblasts. Using quantitative analysis of immunofluorescent staining for lipid content, lineage markers and transcription factors, we tested if the purified cell populations could differentiate into adipocytes in response to treatment with either fatty acids or adipocyte-inducing medium. Both treatments caused the fibroblasts to differentiate into adipocytes, as shown by loss of intracellular TE-7, upregulation of the adipogenic transcription factors PPARγ and C/EBPα, and adoption of a lipid-laden adipocyte morphology. By contrast, myogenic cells did not undergo adipogenesis and showed differential regulation of PPARγ and C/EBPα in response to these adipogenic treatments. Our results show that human skeletal muscle fibroblasts are at least bipotent progenitors that can remain as extracellular-matrix-producing cells or differentiate into adipocytes.


Asunto(s)
Adipogénesis , Miofibroblastos/fisiología , Células Satélite del Músculo Esquelético/fisiología , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Antígeno CD56/metabolismo , Transdiferenciación Celular , Células Cultivadas , Ácidos Grasos/fisiología , Citometría de Flujo , Fucosiltransferasas/metabolismo , Expresión Génica , Humanos , Separación Inmunomagnética , Antígeno Lewis X/metabolismo , Metabolismo de los Lípidos , Músculo Esquelético/citología , PPAR gamma/genética , PPAR gamma/metabolismo , Regulación hacia Arriba
9.
JAMA ; 310(15): 1591-600, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24108501

RESUMEN

IMPORTANCE: Survivors of critical illness demonstrate skeletal muscle wasting with associated functional impairment. OBJECTIVE: To perform a comprehensive prospective characterization of skeletal muscle wasting, defining the pathogenic roles of altered protein synthesis and breakdown. DESIGN, SETTING, AND PARTICIPANTS: Sixty-three critically ill patients (59% male; mean age: 54.7 years [95% CI, 50.0-59.6 years]) with an Acute Physiology and Chronic Health Evaluation II score of 23.5 (95% CI, 21.9-25.2) were prospectively recruited within 24 hours following intensive care unit (ICU) admission from August 2009 to April 2011 at a university teaching and a community hospital in England. Patients were recruited if older than 18 years and were anticipated to be intubated for longer than 48 hours, to spend more than 7 days in critical care, and to survive ICU stay. MAIN OUTCOMES AND MEASURES: Muscle loss was determined through serial ultrasound measurement of the rectus femoris cross-sectional area (CSA) on days 1, 3, 7, and 10. In a subset of patients, the fiber CSA area was quantified along with the ratio of protein to DNA on days 1 and 7. Histopathological analysis was performed. In addition, muscle protein synthesis, breakdown rates, and respective signaling pathways were characterized. RESULTS: There were significant reductions in the rectus femoris CSA observed at day 10 (−17.7% [95% CI, −25.9% to 8.1%]; P < .001). In the 28 patients assessed by all 3 measurement methods on days 1 and 7, the rectus femoris CSA decreased by 10.3% (95% CI, 6.1% to 14.5%), the fiber CSA by 17.5% (95% CI, 5.8% to 29.3%), and the ratio of protein to DNA by 29.5% (95% CI, 13.4% to 45.6%). Decrease in the rectus femoris CSA was greater in patients who experienced multiorgan failure by day 7 (−15.7%; 95% CI, −27.7% to 11.4%) compared with single organ failure (−3.0%; 95% CI, −5.3% to 2.1%) (P < .001), even by day 3 (−8.7% [95% CI, −59.3% to 50.6%] vs −1.8% [95% CI, −12.3% to 10.5%], respectively; P = .03). Myofiber necrosis occurred in 20 of 37 patients (54.1%). Protein synthesis measured by the muscle protein fractional synthetic rate was depressed in patients on day 1 (0.035%/hour; 95% CI, 0.023% to 0.047%/hour) compared with rates observed in fasted healthy controls (0.039%/hour; 95% CI, 0.029% to 0.048%/hour) (P = .57) and increased by day 7 (0.076% [95% CI, 0.032%-0.120%/hour]; P = .03) to rates associated with fed controls (0.065%/hour [95% CI, 0.049% to 0.080%/hour]; P = .30), independent of nutritional load. Leg protein breakdown remained elevated throughout the study (8.5 [95% CI, 4.7 to 12.3] to 10.6 [95% CI, 6.8 to 14.4] µmol of phenylalanine/min/ideal body weight × 100; P = .40). The pattern of intracellular signaling supported increased breakdown (n = 9, r = −0.83, P = .005) and decreased synthesis (n = 9, r = −0.69, P = .04). CONCLUSIONS AND RELEVANCE: Among these critically ill patients, muscle wasting occurred early and rapidly during the first week of critical illness and was more severe among those with multiorgan failure compared with single organ failure. These findings may provide insights into skeletal muscle wasting in critical illness.


Asunto(s)
Enfermedad Crítica , Insuficiencia Multiorgánica/complicaciones , Biosíntesis de Proteínas , Músculo Cuádriceps/patología , APACHE , ADN/análisis , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Insuficiencia Multiorgánica/fisiopatología , Necrosis , Estudios Prospectivos , Proteínas/metabolismo , Músculo Cuádriceps/diagnóstico por imagen , Factores de Tiempo , Ultrasonografía , Síndrome Debilitante
10.
Aging Cell ; 12(3): 333-44, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23374245

RESUMEN

The myogenic behaviour of primary human muscle precursor cells (MPCs) obtained from young (aged 20-25 years) and elderly people (aged 67-82 years) was studied in culture. Cells were compared in terms of proliferation, DNA damage, time course and extent of myogenic marker expression during differentiation, fusion, size of the formed myotubes, secretion of the myogenic regulatory cytokine TGF-ß1 and sensitivity to TGF-ß1 treatment. No differences were observed between cells obtained from the young and elderly people. The cell populations were expanded in culture until replicative senescence. Cultures that maintained their initial proportion of myogenic cells (desmin positive) with passaging (n = 5) were studied and compared with cells from the same individuals in the non-senescent state. The senescent cells exhibited a greater number of cells with DNA damage (γ-H2AX positive), showed impaired expression of markers of differentiation, fused less well, formed smaller myotubes and secreted more TGF-ß. The data strongly suggest that MPCs from young and elderly people have similar myogenic behaviour.


Asunto(s)
Senescencia Celular , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/citología , Mioblastos/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Biomarcadores/análisis , Técnicas de Cultivo de Célula , Diferenciación Celular , División Celular , Fusión Celular , Proliferación Celular , Células Cultivadas , Daño del ADN , Desmina/metabolismo , Femenino , Humanos , Antígeno Ki-67/metabolismo , Masculino , Células Musculares/citología , Músculo Esquelético/metabolismo , Mioblastos/citología , Sarcopenia , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Adulto Joven
11.
J Histochem Cytochem ; 60(6): 428-38, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22511600

RESUMEN

The accurate measurement of the morphological characteristics of cells with nonuniform conformations presents difficulties. We report here a straightforward method using immunofluorescent staining and the commercially available imaging program Adobe Photoshop, which allows objective and precise information to be gathered on irregularly shaped cells. We have applied this measurement technique to the analysis of human muscle cells and their immunologically marked intracellular constituents, as these cells are prone to adopting a highly branched phenotype in culture. Use of this method can be used to overcome many of the long-standing limitations of conventional approaches for quantifying muscle cell size in vitro. In addition, wider applications of Photoshop as a quantitative and semiquantitative tool in immunocytochemistry are explored.


Asunto(s)
Células Musculares/citología , Técnicas de Cultivo de Célula , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Células Cultivadas , Citoplasma/ultraestructura , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Células Musculares/metabolismo , Fibras Musculares Esqueléticas/citología , Mioblastos/citología , Mioblastos/ultraestructura , Proteínas Nucleares/metabolismo , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...