Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Res ; 9(4): 415-429, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33500272

RESUMEN

Metabolic dysregulation is a hallmark of cancer. Many tumors exhibit auxotrophy for various amino acids, such as arginine, because they are unable to meet the demand for these amino acids through endogenous production. This vulnerability can be exploited by employing therapeutic strategies that deplete systemic arginine in order to limit the growth and survival of arginine auxotrophic tumors. Pegzilarginase, a human arginase-1 enzyme engineered to have superior stability and enzymatic activity relative to the native human arginase-1 enzyme, depletes systemic arginine by converting it to ornithine and urea. Therapeutic administration of pegzilarginase in the setting of arginine auxotrophic tumors exerts direct antitumor activity by starving the tumor of exogenous arginine. We hypothesized that in addition to this direct effect, pegzilarginase treatment indirectly augments antitumor immunity through increased antigen presentation, thus making pegzilarginase a prime candidate for combination therapy with immuno-oncology (I-O) agents. Tumor-bearing mice (CT26, MC38, and MCA-205) receiving pegzilarginase in combination with anti-PD-L1 or agonist anti-OX40 experienced significantly increased survival relative to animals receiving I-O monotherapy. Combination pegzilarginase/immunotherapy induced robust antitumor immunity characterized by increased intratumoral effector CD8+ T cells and M1 polarization of tumor-associated macrophages. Our data suggest potential mechanisms of synergy between pegzilarginase and I-O agents that include increased intratumoral MHC expression on both antigen-presenting cells and tumor cells, and increased presence of M1-like antitumor macrophages. These data support the clinical evaluation of I-O agents in conjunction with pegzilarginase for the treatment of patients with cancer.


Asunto(s)
Antineoplásicos/farmacología , Arginasa/farmacología , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Receptores OX40/antagonistas & inhibidores , Traslado Adoptivo , Animales , Arginasa/análisis , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoterapia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Receptores OX40/metabolismo
2.
Front Bioeng Biotechnol ; 9: 793985, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34976980

RESUMEN

Human thymidine phosphorylase (HsTP) is an enzyme with important implications in the field of rare metabolic diseases. Defective mutations of HsTP lead to mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), a disease with a high unmet medical need that is associated with severe neurological and gastrointestinal complications. Current efforts focus on the development of an enzyme replacement therapy (ERT) using the Escherichia coli ortholog (EcTP). However, bacterial enzymes are counter-indicated for human therapeutic applications because they are recognized as foreign by the human immune system, thereby eliciting adverse immune responses and raising significant safety and efficacy risks. Thus, it is critical to utilize the HsTP enzyme as starting scaffold for pre-clinical drug development, thus de-risking the safety concerns associated with the use of bacterial enzymes. However, HsTP expresses very poorly in E. coli, whereas its PEGylation, a crucial chemical modification for achieving long serum persistence of therapeutic enzymes, is highly inefficient and negatively affects its catalytic activity. Here we focused on the engineering of the recombinant expression profile of HsTP in E. coli cells, as well as on the optimization of its PEGylation efficiency aiming at the development of an alternative therapeutic approach for MNGIE. We show that phylogenetic and structural analysis of proteins can provide important insights for the rational design of N'-terminus-truncation constructs which exhibit significantly improved recombinant expression levels. In addition, we developed and implemented a criteria-driven rational surface engineering strategy for the substitution of arginine-to-lysine and lysine-to-arginine residues to achieve more efficient, homogeneous and reproducible PEGylation without negatively affecting the enzymatic catalytic activity upon PEGylation. Collectively, our proposed strategies provide an effective way to optimize enzyme PEGylation and E. coli recombinant expression and are likely applicable for other proteins and enzymes.

3.
Transl Res ; 217: 11-22, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31954097

RESUMEN

Metabolic remodeling contributes to the development and progression of some cancers and exposes them to vulnerabilities, including specific nutrient dependencies that can be targeted therapeutically. Arginine is a semiessential amino acid, and several cancers are unable to endogenously synthesize sufficient levels of arginine for survival and proliferation, most commonly due to reduced expression of argininosuccinate synthase (ASS1). Such cancers are dependent on arginine and they can be targeted via enzyme-mediated depletion of systemic arginine. We report the preclinical safety, antitumor efficacy, and immune-potentiating effects of pegzilarginase, a highly potent human arginine-degrading enzyme. Toxicology studies showed that pegzilarginase-mediated arginine depletion is well tolerated at therapeutic levels that elicit an antitumor growth effect. To determine which tumor types are best suited for clinical development, we profiled clinical tumor samples for ASS1 expression, which correlated with pegzilarginase sensitivity in vivo in patient-derived xenograft (PDx) models. Among the histologies tested, malignant melanoma, small cell lung cancer and Merkel cell carcinoma had the highest prevalence of low ASS1 expression, the highest proportion of PDx models responding to pegzilarginase, and the strongest correlation between low or no ASS1 expression and sensitivity to pegzilarginase. In an immune-competent syngeneic mouse model, pegzilarginase slowed tumor growth and promoted the recruitment of CD8+ tumor infiltrating lymphocytes. This is consistent with the known autophagy-inducing effects of arginine depletion, and the link between autophagy and major histocompatibility complex antigen presentation to T cells. Our work supports the ongoing clinical investigations of pegzilarginase in solid tumors and clinical combination of pegzilarginase with immune checkpoint inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Arginasa/farmacología , Animales , Arginasa/análisis , Arginasa/toxicidad , Femenino , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos ICR , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/enzimología , Proteínas Recombinantes/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Hum Mol Genet ; 25(12): 2483-2497, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27106100

RESUMEN

Inherited retinal dystrophies are a group of genetically heterogeneous conditions with broad phenotypic heterogeneity. We analyzed a large five-generation pedigree with early-onset recessive retinal degeneration to identify the causative mutation. Linkage analysis and homozygosity mapping combined with exome sequencing were carried out to map the disease locus and identify the p.G178R mutation in the asparaginase like-1 gene (ASRGL1), segregating with the retinal dystrophy phenotype in the study pedigree. ASRGL1 encodes an enzyme that catalyzes the hydrolysis of L-asparagine and isoaspartyl-peptides. Studies on the ASRGL1 expressed in Escherichia coli and transiently transfected mammalian cells indicated that the p.G178R mutation impairs the autocatalytic processing of this enzyme resulting in the loss of functional ASRGL1 and leaving the inactive precursor protein as a destabilized and aggregation-prone protein. A zebrafish model overexpressing the mutant hASRGL1 developed retinal abnormalities and loss of cone photoreceptors. Our studies suggest that the p.G178R mutation in ASRGL1 leads to photoreceptor degeneration resulting in progressive vision loss.


Asunto(s)
Asparaginasa/genética , Autoantígenos/genética , Predisposición Genética a la Enfermedad , Retina/patología , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/genética , Adulto , Animales , Modelos Animales de Enfermedad , Exoma/genética , Ligamiento Genético , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Linaje , Fenotipo , Células Fotorreceptoras Retinianas Conos/metabolismo , Degeneración Retiniana/patología , Agudeza Visual/genética , Agudeza Visual/fisiología , Pez Cebra/genética
5.
ACS Chem Biol ; 8(10): 2264-71, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23972067

RESUMEN

Taurine, the most abundant free amino acid in mammals, with many critical roles such as neuronal development, had so far only been reported to be synthetized in eukaryotes. Taurine is the major product of cysteine metabolism in mammals, and its biosynthetic pathway consists of cysteine dioxygenase and cysteine sulfinic acid decarboxylase (hCSAD). Sequence, structural, and mutational analyses of the structurally and sequentially related hCSAD and human glutamic acid decarboxylase (hGAD) enzymes revealed a three residue substrate recognition motif (X1aa19X2aaX3), within the active site that is responsible for coordinating their respective preferred amino acid substrates. Introduction of the cysteine sulfinic acid (CSA) motif into hGAD (hGAD-S192F/N212S/F214Y) resulted in an enzyme with a >700 fold switch in selectivity toward the decarboxylation of CSA over its preferred substrate, l-glutamic acid. Surprisingly, we found this CSA recognition motif in the genome sequences of several marine bacteria, prompting us to evaluate the catalytic properties of bacterial amino acid decarboxylases that were predicted by sequence motif to decarboxylate CSA but had been annotated as GAD enzymes. We show that CSAD from Synechococcus sp. PCC 7335 specifically decarboxylated CSA and that the bacteria accumulated intracellular taurine. The fact that CSAD homologues exist in certain bacteria and are frequently found in operons containing the recently discovered bacterial cysteine dioxygenases that oxidize l-cysteine to CSA supports the idea that a bona fide bacterial taurine biosynthetic pathway exists in prokaryotes.


Asunto(s)
Bacterias/enzimología , Carboxiliasas/química , Carboxiliasas/metabolismo , Descubrimiento de Drogas , Taurina/biosíntesis , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Carboxiliasas/genética , Células Cultivadas , Estabilidad de Enzimas , Humanos , Modelos Moleculares , Estructura Molecular , Transducción de Señal , Especificidad por Sustrato , Taurina/química , Taurina/genética
6.
Methods Mol Biol ; 978: 31-44, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23423887

RESUMEN

There is significant interest in engineering human amino acid degrading enzymes as non-immunogenic chemotherapeutic agents. We describe a high-throughput fluorescence activated cell sorting (FACS) assay for detecting the catalytic activity of amino acid degrading enzymes in bacteria, at the single cell level. This assay relies on coupling the synthesis of the GFP reporter to the catalytic activity of the desired amino acid degrading enzyme in an appropriate E. coli genetic background. The method described here allows facile screening of much larger libraries (10(6)-10(7)) than was previously possible. We demonstrate the application of this technique in the screening of libraries of bacterial and human asparaginases and also for the catalytic optimization of an engineered human methionine gamma lyase.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Ingeniería de Proteínas/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética
7.
ACS Chem Biol ; 7(11): 1840-7, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22891768

RESUMEN

The human asparaginase-like protein 1 (hASRGL1) catalyzes the hydrolysis of l-asparagine and isoaspartyl-dipeptides. As an N-terminal nucleophile (Ntn) hydrolase superfamily member, the active form of hASRGL1 is generated by an intramolecular cleavage step with Thr168 as the catalytic residue. However, in vitro, autoprocessing is incomplete (~50%), fettering the biophysical characterization of hASRGL1. We circumvented this obstacle by constructing a circularly permuted hASRGL1 that uncoupled the autoprocessing reaction, allowing us to kinetically and structurally characterize this enzyme and the precursor-like hASRGL1-Thr168Ala variant. Crystallographic and biochemical evidence suggest an activation mechanism where a torsional restraint on the Thr168 side chain helps drive the intramolecular processing reaction. Cleavage and formation of the active site releases the torsional restriction on Thr168, which is facilitated by a small conserved Gly-rich loop near the active site that allows the conformational changes necessary for activation.


Asunto(s)
Amidohidrolasas/química , Amidohidrolasas/metabolismo , Asparaginasa/química , Asparaginasa/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Amidohidrolasas/genética , Asparaginasa/genética , Asparagina/metabolismo , Autoantígenos/genética , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Humanos , Hidrólisis , Modelos Moleculares , Mutación Puntual , Conformación Proteica
8.
Methods Enzymol ; 502: 291-319, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22208990

RESUMEN

Cancer has become the leading cause of death in the developed world and has remained one of the most difficult diseases to treat. One of the difficulties in treating cancer is that conventional chemotherapies often have unacceptable toxicities toward normal cells at the doses required to kill tumor cells. Thus, the demand for new and improved tumor specific therapeutics for the treatment of cancer remains high. Alterations to cellular metabolism constitute a nearly universal feature of many types of cancer cells. In particular, many tumors exhibit deficiencies in one or more amino acid synthesis or salvage pathways forcing a reliance on the extracellular pool of these amino acids to satisfy protein biosynthesis demands. Therefore, one treatment modality that satisfies the objective of developing cancer cell-selective therapeutics is the systemic depletion of that tumor-essential amino acid, which can result in tumor apoptosis with minimal side effects to normal cells. While this strategy was initially suggested over 50 years ago, it has been recently experiencing a renaissance owing to advances in protein engineering technology, and more sophisticated approaches to studying the metabolic differences between tumorigenic and normal cells. Dietary restriction is typically not sufficient to achieve a therapeutically relevant level of amino acid depletion for cancer treatment. Therefore, intravenous administration of enzymes is used to mediate the degradation of such amino acids for therapeutic purposes. Unfortunately, the human genome does not encode enzymes with the requisite catalytic or pharmacological properties necessary for therapeutic purposes. The use of heterologous enzymes has been explored extensively both in animal studies and in clinical trials. However, heterologous enzymes are immunogenic and elicit adverse responses ranging from anaphylactic shock to antibody-mediated enzyme inactivation, and therefore have had limited utility. The one notable exception is Escherichia colil-asparaginase II (EcAII), which has been FDA-approved for the treatment of childhood acute lymphoblastic leukemia. The use of engineered human enzymes, to which natural tolerance is likely to prevent recognition by the adaptive immune system, offers a novel approach for capitalizing on the promising strategy of systemic depletion of tumor-essential amino acids. In this work, we review several strategies that we have developed to: (i) reduce the immunogenicity of a nonhuman enzyme, (ii) engineer human enzymes for novel catalytic specificities, and (iii) improve the pharmacological characteristics of a human enzyme that exhibits the requisite substrate specificity for amino acid degradation but exhibits low activity and stability under physiological conditions.


Asunto(s)
Aminoácidos/deficiencia , Asparaginasa/administración & dosificación , Terapia Enzimática/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Animales , Asparaginasa/genética , Asparaginasa/inmunología , Asparaginasa/uso terapéutico , Sitios de Unión , Clonación Molecular , Simulación por Computador , Estabilidad de Enzimas , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Cinética , Ratones , Mutagénesis Sitio-Dirigida , Polietilenglicoles/química , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
9.
ACS Chem Biol ; 6(2): 158-68, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21043486

RESUMEN

Gaucher's disease is caused by deficiency of lysosomal glucocerebrosidase (GC) activity and accumulation of GC substrate, glucosylceramide. A number of point mutations in GC encoding gene have been reported to destabilize the enzyme native structure, resulting in protein misfolding and degradation. Particularly, the L444P GC variant, often associated with neuropathic manifestations of the disease, is severely destabilized and immediately degraded, resulting in complete loss of enzymatic activity. In addition, glucosylceramide accumulation causes Ca(2+) efflux from the endoplasmic reticulum (ER) through ryanodine receptors (RyRs) in the neurons of Gaucher's disease patients. We hypothesized that excessive [Ca(2+)](ER) efflux impairs ER folding and studied how modulation of [Ca(2+)](ER) affects folding of L444P GC in patient-derived fibroblasts. We report that RyRs blockers mediated [Ca(2+)] modulation, recreating a "wild type-like" folding environment in the ER, more amenable to rescuing the folding of mutated L444P GC through proteostasis regulation. Treating patient-derived fibroblasts with a RyRs blocker and a proteostasis modulator, MG-132, results in enhanced folding, trafficking, and activity of the severely destabilized L444P GC variant. Global gene expression profiling and mechanistic studies were conducted to investigate the folding quality control expression pattern conducive to native folding of mutated L444P GC and revealed that the ER-lumenal BiP/GRP78 plays a key role in the biogenesis of this GC variant.


Asunto(s)
Calcio/metabolismo , Fibroblastos/metabolismo , Glucosilceramidasa/metabolismo , Homeostasis , Proteínas/metabolismo , Cationes Bivalentes , Línea Celular , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Fibroblastos/enzimología , Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Perfilación de la Expresión Génica , Variación Genética , Glucosilceramidasa/química , Glucosilceramidasa/genética , Humanos , Lisosomas/enzimología , Lisosomas/metabolismo , Neuronas/metabolismo , Proteínas/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...