RESUMEN
Patients with cancer of unknown primary (CUP) carry the double burden of an aggressive disease and reduced access to therapies. Experimental models are pivotal for CUP biology investigation and drug testing. We derived two CUP cell lines (CUP#55 and #96) and corresponding patient-derived xenografts (PDXs), from ascites tumor cells. CUP cell lines and PDXs underwent histological, immune-phenotypical, molecular, and genomic characterization confirming the features of the original tumor. The tissue-of-origin prediction was obtained from the tumor microRNA expression profile and confirmed by single-cell transcriptomics. Genomic testing and fluorescence in situ hybridization analysis identified FGFR2 gene amplification in both models, in the form of homogeneously staining region (HSR) in CUP#55 and double minutes in CUP#96. FGFR2 was recognized as the main oncogenic driver and therapeutic target. FGFR2-targeting drug BGJ398 (infigratinib) in combination with the MEK inhibitor trametinib proved to be synergic and exceptionally active, both in vitro and in vivo. The effects of the combined treatment by single-cell gene expression analysis revealed a remarkable plasticity of tumor cells and the greater sensitivity of cells with epithelial phenotype. This study brings personalized therapy closer to CUP patients and provides the rationale for FGFR2 and MEK targeting in metastatic tumors with FGFR2 pathway activation.
Asunto(s)
Neoplasias Primarias Desconocidas , Inhibidores de Proteínas Quinasas , Piridonas , Pirimidinonas , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Sinergismo Farmacológico , Amplificación de Genes , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Primarias Desconocidas/tratamiento farmacológico , Neoplasias Primarias Desconocidas/genética , Neoplasias Primarias Desconocidas/patología , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridonas/farmacología , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Pirimidinonas/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
isomiRs, the sequence-variants of microRNA, are known to be tissue and cell type specific but their physiological role is largely unknown. In our study, we explored for the first time the expression of isomiRs across different Stage I epithelial ovarian cancer (EOC) histological subtypes, in order to shed new light on their biological role in tumor growth and progression. In a multicentric retrospective cohort of tumor biopsies (n = 215) we sequenced small RNAs finding 971 expressed miRNAs, 64% of which are isomiRs. Among them, 42 isomiRs showed a clear histotype specific pattern, confirming our previously identified miRNA markers (miR192/194 and miR30a-3p/5p for mucinous and clear cell subtypes, respectively) and uncovering new biomarkers for all the five subtypes. Using integrative models, we found that the 38% of these miRNA expression alterations is the result of copy number variations while the 17% of differential transcriptional activities. Our work represents the first attempt to characterize isomiRs expression in Stage I EOC within and across subtypes and to contextualize their alterations in the framework of the large genomic heterogeneity of this tumor.
Asunto(s)
MicroARNs , Neoplasias Ováricas , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma Epitelial de Ovario/genética , Variaciones en el Número de Copia de ADN , Estudios Retrospectivos , Perfilación de la Expresión Génica , Neoplasias Ováricas/patologíaRESUMEN
BACKGROUND: Stage I epithelial ovarian cancer (EOC) encompasses five histologically different subtypes of tumors confined to the ovaries with a generally favorable prognosis. Despite the intrinsic heterogeneity, all stage I EOCs are treated with complete resection and adjuvant therapy in most of the cases. Owing to the lack of robust prognostic markers, this often leads to overtreatment. Therefore, a better molecular characterization of stage I EOCs could improve the assessment of the risk of relapse and the refinement of optimal treatment options. MATERIALS AND METHODS: 205 stage I EOCs tumor biopsies with a median follow-up of eight years were gathered from two independent Italian tumor tissue collections, and the genome distribution of somatic copy number alterations (SCNAs) was investigated by shallow whole genome sequencing (sWGS) approach. RESULTS: Despite the variability in SCNAs distribution both across and within the histotypes, we were able to define three common genomic instability patterns, namely stable, unstable, and highly unstable. These patterns were based on the percentage of the genome affected by SCNAs and on their length. The genomic instability pattern was strongly predictive of patients' prognosis also with multivariate models including currently used clinico-pathological variables. CONCLUSIONS: The results obtained in this study support the idea that novel molecular markers, in this case genomic instability patterns, can anticipate the behavior of stage I EOC regardless of tumor subtype and provide valuable prognostic information. Thus, it might be propitious to extend the study of these genomic instability patterns to improve rational management of this disease.
Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias Ováricas , Carcinoma Epitelial de Ovario/genética , Femenino , Inestabilidad Genómica , Genómica , Humanos , Recurrencia Local de Neoplasia , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , PronósticoRESUMEN
SUMMARY: We present NewWave, a scalable R/Bioconductor package for the dimensionality reduction and batch effect removal of single-cell RNA sequencing data. To achieve scalability, NewWave uses mini-batch optimization and can work with out-of-memory data, enabling users to analyze datasets with millions of cells. AVAILABILITY AND IMPLEMENTATION: NewWave is implemented as an open-source R package available through the Bioconductor project at https://bioconductor.org/packages/NewWave/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Programas Informáticos , RNA-Seq , Secuenciación del ExomaRESUMEN
Metastasis is responsible for the majority of cancer-related deaths. Particularly, challenging is the management of metastatic cancer of unknown primary site (CUP), whose tissue of origin (TOO) remains undetermined even after extensive investigations and whose therapy is rather unspecific and poorly effective. Molecular approaches to identify the most probable TOO of CUPs can overcome some of these issues. In this study, we applied a predetermined set of 89 microRNAs (miRNAs) to infer the TOO of 53 metastatic cancers of unknown or uncertain origin. The miRNA expression was assessed with droplet digital PCR in 159 samples, including primary tumors from 17 tumor classes (reference set) and metastases of known and unknown origin (test set). We combined two different statistical models for class prediction to obtain the most probable TOOs: the nearest shrunken centroids approach of Prediction Analysis of Microarrays (PAMR) and the least absolute shrinkage and selection operator (LASSO) models. The molecular test was successful for all formalin-fixed paraffin-embedded samples and provided a TOO identification within 1 week from the biopsy procedure. The most frequently predicted origins were gastrointestinal, pancreas, breast, lung, and bile duct. The assay was applied also to multiple metastases from the same CUP, collected from different metastatic sites: The predictions showed a strong agreement, intrinsically validating our assay. The final CUPs' TOO prediction was compared with the clinicopathological hypothesis of primary site. Moreover, a panel of 13 miRNAs proved to have prognostic value and be associated with overall survival in CUP patients. Our study demonstrated that miRNA expression profiling in CUP samples could be employed as diagnostic and prognostic test. Our molecular analysis can be performed on request, concomitantly with standard diagnostic workup and in association with genetic profiling, to offer valuable indications about the possible primary site, thereby supporting treatment decisions.