Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur Arch Otorhinolaryngol ; 281(6): 3279-3281, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38536492

RESUMEN

BACKGROUND: Angiokeratoma is a rare cutaneous presentation with unknown etiology. CASE PRESENTATION: A case of a 10-year male, who was presented to the ENT OPD with a swelling over the posterior aspect of the tongue. The chief complaints included growth on the right side of the posterior third of the tongue which was extending up to the base of the tongue on the same side. CONCLUSION: Excisional biopsy was taken and sent for histopathology which was suggestive of inflamed angiokeratoma. Post-excision there is no recurrence till date.


Asunto(s)
Angioqueratoma , Neoplasias de la Lengua , Humanos , Masculino , Angioqueratoma/patología , Angioqueratoma/diagnóstico , Neoplasias de la Lengua/patología , Neoplasias de la Lengua/cirugía , Neoplasias de la Lengua/diagnóstico , Niño , Biopsia
2.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260390

RESUMEN

Advances in cell therapy offer promise for some of the most devastating neural injuries, including spinal cord injury (SCI). Endogenous VSX2-expressing spinal V2a interneurons have been implicated as a key component in plasticity and therapeutically driven recovery post-SCI. While transplantation of generic V2a neurons may have therapeutic value, generation of human spinal V2a neurons with rostro-caudal specificity and assessment of their functional synaptic integration with the injured spinal cord has been elusive. Here, we efficiently differentiated optogenetically engineered cervical V2a spinal interneurons (SpINs) from human induced pluripotent stem cells and tested their capacity to form functional synapses with injured diaphragm motor networks in a clinically-relevant sub-acute model of cervical contusion injury. Neuroanatomical tracing and immunohistochemistry demonstrated transplant integration and synaptic connectivity with injured host tissue. Optogenetic activation of transplanted human V2a SpINs revealed functional synaptic connectivity to injured host circuits, culminating in improved diaphragm activity assessed by electromyography. Furthermore, optogenetic activation of host supraspinal pathways revealed functional innervation of transplanted cells by host neurons, which also led to enhanced diaphragm contraction indicative of a functional neuronal relay. Single cell analyses pre- and post-transplantation suggested the in vivo environment resulted in maturation of cervical SpINs that mediate the formation of neuronal relays, as well as differentiation of glial progenitors involved in repair of the damaged spinal cord. This study rigorously demonstrates feasibility of generating human cervical spinal V2a interneurons that develop functional host-transplant and transplant-host connectivity resulting in improved muscle activity post-SCI.

3.
Nucleic Acids Res ; 52(D1): D679-D689, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37941138

RESUMEN

WikiPathways (wikipathways.org) is an open-source biological pathway database. Collaboration and open science are pivotal to the success of WikiPathways. Here we highlight the continuing efforts supporting WikiPathways, content growth and collaboration among pathway researchers. As an evolving database, there is a growing need for WikiPathways to address and overcome technical challenges. In this direction, WikiPathways has undergone major restructuring, enabling a renewed approach for sharing and curating pathway knowledge, thus providing stability for the future of community pathway curation. The website has been redesigned to improve and enhance user experience. This next generation of WikiPathways continues to support existing features while improving maintainability of the database and facilitating community input by providing new functionality and leveraging automation.


Asunto(s)
Bases de Datos Factuales
4.
Metab Eng Commun ; 17: e00228, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38029016

RESUMEN

Geraniol is a monoterpene with wide applications in the food, cosmetics, and pharmaceutical industries. Microbial production has largely used model organisms lacking favorable properties for monoterpene production. In this work, we produced geraniol in metabolically engineered Yarrowia lipolytica. First, two plant-derived geraniol synthases (GES) from Catharanthus roseus (Cr) and Valeriana officinalis (Vo) were tested based on previous reports of activity. Both wild type and truncated mutants of GES (without signal peptide targeting chloroplast) were examined by co-expressing with MVA pathway enzymes tHMG1 and IDI1. Truncated CrGES (tCrGES) produced the most geraniol and thus was used for further experimentation. The initial strain was obtained by overexpression of the truncated HMG1, IDI and tCrGES. The acetyl-CoA precursor pool was enhanced by overexpressing mevalonate pathway genes such as ERG10, HMGS or MVK, PMK. The final strain overexpressing 3 copies of tCrGES and single copies of ERG10, HMGS, tHMG1, IDI produced approximately 1 g/L in shake-flask fermentation. This is the first demonstration of geraniol production in Yarrowia lipolytica and the highest de novo titer reported to date in yeast.

5.
Nat Neurosci ; 26(12): 2104-2121, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957317

RESUMEN

Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD), leading to earlier age of clinical onset and exacerbating pathologies. There is a critical need to identify protective targets. Recently, a rare APOE variant, APOE3-R136S (Christchurch), was found to protect against early-onset AD in a PSEN1-E280A carrier. In this study, we sought to determine if the R136S mutation also protects against APOE4-driven effects in LOAD. We generated tauopathy mouse and human iPSC-derived neuron models carrying human APOE4 with the homozygous or heterozygous R136S mutation. We found that the homozygous R136S mutation rescued APOE4-driven Tau pathology, neurodegeneration and neuroinflammation. The heterozygous R136S mutation partially protected against APOE4-driven neurodegeneration and neuroinflammation but not Tau pathology. Single-nucleus RNA sequencing revealed that the APOE4-R136S mutation increased disease-protective and diminished disease-associated cell populations in a gene dose-dependent manner. Thus, the APOE-R136S mutation protects against APOE4-driven AD pathologies, providing a target for therapeutic development against AD.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Mutación/genética , Enfermedades Neuroinflamatorias , Tauopatías/genética
6.
Mater Today Bio ; 23: 100821, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37868949

RESUMEN

The remarkable contractility and force generation ability exhibited by cancer cells empower them to overcome the resistance and steric hindrance presented by a three-dimensional, interconnected matrix. Cancer cells disseminate by actively remodelling and deforming their extracellular matrix (ECM). The process of tumour growth and its ECM remodelling have been extensively studied, but the effect of the cellular tumour microenvironment (TME) has been ignored in most studies that investigated tumour-cell-mediated ECM deformations and realignment. This study reports the integration of stromal cells in spheroid contractility assays that impacts the ECM remodelling and invasion abilities of cancer spheroids. To investigate this, we developed a novel multilayer in vitro assay that incorporates stromal cells and quantifies the contractile deformations that tumour spheroids exert on the ECM. We observed a negative correlation between the spheroid invasion potential and the levels of collagen deformation. The presence of stromal cells significantly increased cancer cell invasiveness and altered the cancer cells' ability to deform and realign collagen gel, due to upregulation of proinflammatory cytokines. Interestingly, this was observed consistently in both metastatic and non-metastatic cancer cells. Our findings contribute to a better understanding of the vital role played by the cellular TME in regulating the invasive outgrowth of cancer cells and underscore the potential of utilising matrix deformation measurements as a biophysical marker for evaluating invasiveness and informing targeted therapeutic opportunities.

7.
Cell Rep ; 42(10): 113252, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37863057

RESUMEN

Apolipoprotein E4 (APOE4) is an important driver of Tau pathology, gliosis, and degeneration in Alzheimer's disease (AD). Still, the mechanisms underlying these APOE4-driven pathological effects remain elusive. Here, we report in a tauopathy mouse model that APOE4 promoted the nucleocytoplasmic translocation and release of high-mobility group box 1 (HMGB1) from hippocampal neurons, which correlated with the severity of hippocampal microgliosis and degeneration. Injection of HMGB1 into the hippocampus of young APOE4-tauopathy mice induced considerable and persistent gliosis. Selective removal of neuronal APOE4 reduced HMGB1 translocation and release. Treatment of APOE4-tauopathy mice with HMGB1 inhibitors effectively blocked the intraneuronal translocation and release of HMGB1 and ameliorated the development of APOE4-driven gliosis, Tau pathology, neurodegeneration, and myelin deficits. Single-nucleus RNA sequencing revealed that treatment with HMGB1 inhibitors diminished disease-associated and enriched disease-protective subpopulations of neurons, microglia, and astrocytes in APOE4-tauopathy mice. Thus, HMGB1 inhibitors represent a promising approach for treating APOE4-related AD.


Asunto(s)
Enfermedad de Alzheimer , Proteína HMGB1 , Tauopatías , Animales , Ratones , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Gliosis , Ratones Transgénicos , Tauopatías/tratamiento farmacológico
8.
Bioinformatics ; 39(9)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37707514

RESUMEN

SUMMARY: Knowledge graphs are an increasingly common data structure for representing biomedical information. These knowledge graphs can easily represent heterogeneous types of information, and many algorithms and tools exist for querying and analyzing graphs. Biomedical knowledge graphs have been used in a variety of applications, including drug repurposing, identification of drug targets, prediction of drug side effects, and clinical decision support. Typically, knowledge graphs are constructed by centralization and integration of data from multiple disparate sources. Here, we describe BioThings Explorer, an application that can query a virtual, federated knowledge graph derived from the aggregated information in a network of biomedical web services. BioThings Explorer leverages semantically precise annotations of the inputs and outputs for each resource, and automates the chaining of web service calls to execute multi-step graph queries. Because there is no large, centralized knowledge graph to maintain, BioThings Explorer is distributed as a lightweight application that dynamically retrieves information at query time. AVAILABILITY AND IMPLEMENTATION: More information can be found at https://explorer.biothings.io and code is available at https://github.com/biothings/biothings_explorer.


Asunto(s)
Algoritmos , Reconocimiento de Normas Patrones Automatizadas
9.
Sci Adv ; 9(32): eadg9781, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566656

RESUMEN

Vascularization is driven by morphogen signals and mechanical cues that coordinately regulate cellular force generation, migration, and shape change to sculpt the developing vascular network. However, it remains unclear whether developing vasculature actively regulates its own mechanical properties to achieve effective vascularization. We engineered tissue constructs containing endothelial cells and fibroblasts to investigate the mechanics of vascularization. Tissue stiffness increases during vascular morphogenesis resulting from emergent interactions between endothelial cells, fibroblasts, and ECM and correlates with enhanced vascular function. Contractile cellular forces are key to emergent tissue stiffening and synergize with ECM mechanical properties to modulate the mechanics of vascularization. Emergent tissue stiffening and vascular function rely on mechanotransduction signaling within fibroblasts, mediated by YAP1. Mouse embryos lacking YAP1 in fibroblasts exhibit both reduced tissue stiffness and develop lethal vascular defects. Translating our findings through biology-inspired vascular tissue engineering approaches will have substantial implications in regenerative medicine.


Asunto(s)
Células Endoteliales , Mecanotransducción Celular , Ratones , Animales , Mecanotransducción Celular/fisiología , Ingeniería de Tejidos/métodos , Morfogénesis , Diferenciación Celular , Matriz Extracelular
10.
Elife ; 122023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37306300

RESUMEN

Bacteria within the gut microbiota possess the ability to metabolize a wide array of human drugs, foods, and toxins, but the responsible enzymes for these chemical events remain largely uncharacterized due to the time-consuming nature of current experimental approaches. Attempts have been made in the past to computationally predict which bacterial species and enzymes are responsible for chemical transformations in the gut environment, but with low accuracy due to minimal chemical representation and sequence similarity search schemes. Here, we present an in silico approach that employs chemical and protein Similarity algorithms that Identify MicrobioMe Enzymatic Reactions (SIMMER). We show that SIMMER accurately predicts the responsible species and enzymes for a queried reaction, unlike previous methods. We demonstrate SIMMER use cases in the context of drug metabolism by predicting previously uncharacterized enzymes for 88 drug transformations known to occur in the human gut. We validate these predictions on external datasets and provide an in vitro validation of SIMMER's predictions for metabolism of methotrexate, an anti-arthritic drug. After demonstrating its utility and accuracy, we made SIMMER available as both a command-line and web tool, with flexible input and output options for determining chemical transformations within the human gut. We present SIMMER as a computational addition to the microbiome researcher's toolbox, enabling them to make informed hypotheses before embarking on the lengthy laboratory experiments required to characterize novel bacterial enzymes that can alter human ingested compounds.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Bacterias/metabolismo , Alimentos , Algoritmos
11.
Nat Immunol ; 24(7): 1173-1187, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37291385

RESUMEN

Blood protein extravasation through a disrupted blood-brain barrier and innate immune activation are hallmarks of neurological diseases and emerging therapeutic targets. However, how blood proteins polarize innate immune cells remains largely unknown. Here, we established an unbiased blood-innate immunity multiomic and genetic loss-of-function pipeline to define the transcriptome and global phosphoproteome of blood-induced innate immune polarization and its role in microglia neurotoxicity. Blood induced widespread microglial transcriptional changes, including changes involving oxidative stress and neurodegenerative genes. Comparative functional multiomics showed that blood proteins induce distinct receptor-mediated transcriptional programs in microglia and macrophages, such as redox, type I interferon and lymphocyte recruitment. Deletion of the blood coagulation factor fibrinogen largely reversed blood-induced microglia neurodegenerative signatures. Genetic elimination of the fibrinogen-binding motif to CD11b in Alzheimer's disease mice reduced microglial lipid metabolism and neurodegenerative signatures that were shared with autoimmune-driven neuroinflammation in multiple sclerosis mice. Our data provide an interactive resource for investigation of the immunology of blood proteins that could support therapeutic targeting of microglia activation by immune and vascular signals.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Ratones , Animales , Microglía/metabolismo , Multiómica , Barrera Hematoencefálica/metabolismo , Enfermedad de Alzheimer/genética , Fibrinógeno
12.
ArXiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131885

RESUMEN

Knowledge graphs are an increasingly common data structure for representing biomedical information. These knowledge graphs can easily represent heterogeneous types of information, and many algorithms and tools exist for querying and analyzing graphs. Biomedical knowledge graphs have been used in a variety of applications, including drug repurposing, identification of drug targets, prediction of drug side effects, and clinical decision support. Typically, knowledge graphs are constructed by centralization and integration of data from multiple disparate sources. Here, we describe BioThings Explorer, an application that can query a virtual, federated knowledge graph derived from the aggregated information in a network of biomedical web services. BioThings Explorer leverages semantically precise annotations of the inputs and outputs for each resource, and automates the chaining of web service calls to execute multi-step graph queries. Because there is no large, centralized knowledge graph to maintain, BioThing Explorer is distributed as a lightweight application that dynamically retrieves information at query time. More information can be found at https://explorer.biothings.io, and code is available at https://github.com/biothings/biothings_explorer.

13.
Adv Sci (Weinh) ; 10(16): e2206554, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37051804

RESUMEN

Cancer cell extravasation, a key step in the metastatic cascade, involves cancer cell arrest on the endothelium, transendothelial migration (TEM), followed by the invasion into the subendothelial extracellular matrix (ECM) of distant tissues. While cancer research has mostly focused on the biomechanical interactions between tumor cells (TCs) and ECM, particularly at the primary tumor site, very little is known about the mechanical properties of endothelial cells and the subendothelial ECM and how they contribute to the extravasation process. Here, an integrated experimental and theoretical framework is developed to investigate the mechanical crosstalk between TCs, endothelium and subendothelial ECM during in vitro cancer cell extravasation. It is found that cancer cell actin-rich protrusions generate complex push-pull forces to initiate and drive TEM, while transmigration success also relies on the forces generated by the endothelium. Consequently, mechanical properties of the subendothelial ECM and endothelial actomyosin contractility that mediate the endothelial forces also impact the endothelium's resistance to cancer cell transmigration. These results indicate that mechanical features of distant tissues, including force interactions between the endothelium and the subendothelial ECM, are key determinants of metastatic organotropism.


Asunto(s)
Neoplasias , Migración Transendotelial y Transepitelial , Células Endoteliales , Endotelio , Actinas , Fenómenos Mecánicos
14.
Nat Aging ; 3(3): 275-296, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37118426

RESUMEN

Apolipoprotein E4 (APOE4) is the strongest known genetic risk factor for late-onset Alzheimer's disease (AD). Conditions of stress or injury induce APOE expression within neurons, but the role of neuronal APOE4 in AD pathogenesis is still unclear. Here we report the characterization of neuronal APOE4 effects on AD-related pathologies in an APOE4-expressing tauopathy mouse model. The selective genetic removal of APOE4 from neurons led to a significant reduction in tau pathology, gliosis, neurodegeneration, neuronal hyperexcitability and myelin deficits. Single-nucleus RNA-sequencing revealed that the removal of neuronal APOE4 greatly diminished neurodegenerative disease-associated subpopulations of neurons, oligodendrocytes, astrocytes and microglia whose accumulation correlated to the severity of tau pathology, neurodegeneration and myelin deficits. Thus, neuronal APOE4 plays a central role in promoting the development of major AD pathologies and its removal can mitigate the progressive cellular and tissue alterations occurring in this model of APOE4-driven tauopathy.


Asunto(s)
Enfermedades Neurodegenerativas , Tauopatías , Ratones , Animales , Apolipoproteína E4/genética , Enfermedades Neurodegenerativas/genética , Vaina de Mielina/metabolismo , Gliosis/genética , Tauopatías/genética , Neuronas/metabolismo
15.
Development ; 150(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36994838

RESUMEN

Transcriptional networks governing cardiac precursor cell (CPC) specification are incompletely understood owing, in part, to limitations in distinguishing CPCs from non-cardiac mesoderm in early gastrulation. We leveraged detection of early cardiac lineage transgenes within a granular single-cell transcriptomic time course of mouse embryos to identify emerging CPCs and describe their transcriptional profiles. Mesp1, a transiently expressed mesodermal transcription factor, is canonically described as an early regulator of cardiac specification. However, we observed perdurance of CPC transgene-expressing cells in Mesp1 mutants, albeit mislocalized, prompting us to investigate the scope of the role of Mesp1 in CPC emergence and differentiation. Mesp1 mutant CPCs failed to robustly activate markers of cardiomyocyte maturity and crucial cardiac transcription factors, yet they exhibited transcriptional profiles resembling cardiac mesoderm progressing towards cardiomyocyte fates. Single-cell chromatin accessibility analysis defined a Mesp1-dependent developmental breakpoint in cardiac lineage progression at a shift from mesendoderm transcriptional networks to those necessary for cardiac patterning and morphogenesis. These results reveal Mesp1-independent aspects of early CPC specification and underscore a Mesp1-dependent regulatory landscape required for progression through cardiogenesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Epigenómica , Miocitos Cardíacos , Animales , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo
16.
Nat Commun ; 14(1): 1364, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914634

RESUMEN

Robust, generalizable approaches to identify compounds efficiently with undesirable mechanisms of action in complex cellular assays remain elusive. Such a process would be useful for hit triage during high-throughput screening and, ultimately, predictive toxicology during drug development. Here we generate cell painting and cellular health profiles for 218 prototypical cytotoxic and nuisance compounds in U-2 OS cells in a concentration-response format. A diversity of compounds that cause cellular damage produces bioactive cell painting morphologies, including cytoskeletal poisons, genotoxins, nonspecific electrophiles, and redox-active compounds. Further, we show that lower quality lysine acetyltransferase inhibitors and nonspecific electrophiles can be distinguished from more selective counterparts. We propose that the purposeful inclusion of cytotoxic and nuisance reference compounds such as those profiled in this resource will help with assay optimization and compound prioritization in complex cellular assays like cell painting.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Oxidación-Reducción
17.
World J Methodol ; 12(4): 274-284, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-36159101

RESUMEN

BACKGROUND: Performing ultrasound during the current pandemic time is quite challenging. To reduce the chances of cross-infection and keep healthcare workers safe, a robotic ultrasound system was developed, which can be controlled remotely. It will also pave way for broadening the reach of ultrasound in remote distant rural areas as well. AIM: To assess the feasibility of a robotic system in performing abdominal ultrasound and compare it with the conventional ultrasound system. METHODS: A total of 21 healthy volunteers were recruited. Ultrasound was performed in two settings, using the robotic arm and conventional hand-held procedure. Images acquired were analyzed by separate radiologists. RESULTS: Our study showed that the robotic arm model was feasible, and the results varied based on the organ imaged. The liver images showed no significant difference. For other organs, the need for repeat imaging was higher in the robotic arm, which could be attributed to the radiologist's learning curve and ability to control the haptic device. The doctor and volunteer surveys also showed significant comfort with acceptance of the technology and they expressed their desire to use it in the future. CONCLUSION: This study shows that robotic ultrasound is feasible and is the need of the hour during the pandemic.

18.
ACS Chem Biol ; 16(11): 2490-2501, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34499469

RESUMEN

Engineering of carbohydrate-active enzymes such as glycosynthases to enable chemoenzymatic synthesis of bespoke oligosaccharides has been limited by the lack of suitable ultrahigh-throughput screening methods capable of robustly detecting either starting substrates or end-products of the glycosidic bond formation reaction. Currently, there are limited screening methods available for rapid and highly sensitive single-cell-based screening of glycosynthase enzymes employing azido sugars as activated donor glycosyl substrates. Here, we report a fluorescence-based approach employing click-chemistry for the selective detection of glycosyl azides as substrates versus free inorganic azides as reaction products that facilitated an ultrahigh-throughput in vivo single-cell-based assay of glycosynthase activity. This assay was developed based on the distinct differences observed in relative fluorescence intensity of the triazole-containing fluorophore product formed during the click-chemistry reaction of organic glycosyl azides versus inorganic azides. This discovery formed the basis for proof of concept validation of a directed evolution methodology for screening and sorting glycosynthase mutants capable of synthesis of targeted fucosylated oligosaccharides. Our screening approach facilitated fluorescence-activated cell sorting of an error-prone polymerase chain reaction-based mutant library of fucosynthases expressed in Escherichia coli to identify several novel mutants that showed increased activity for ß-fucosyl azide-activated donor sugars toward desired acceptor sugars (e.g., pNP-xylose and lactose). Finally, we discuss avenues for improving this proof of concept in vivo assay method to identify better glycosynthase mutants and further demonstrate the broader applicability of this screening methodology for synthesis of bespoke glycans.


Asunto(s)
Azidas/química , Química Clic , Glicósidos/metabolismo , Ligasas/metabolismo , Azúcares/química , Glicosilación , Especificidad por Sustrato
19.
ACS Synth Biol ; 10(4): 682-689, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33749248

RESUMEN

Detection of azide-tagged biomolecules (e.g., azido sugars) inside living cells using "click" chemistry has been revolutionary to the field of chemical biology. However, we currently still lack suitable synthetic biology tools to autonomously and rapidly detect azide ions. Here, we have developed an engineered synthetic promoter system called cyn regulon, and complementary Escherichia coli engineered strains, to selectively detect azide ions and autonomously induce downstream expression of reporter genes. The engineered cyn azide operon allowed highly tunable reporter green fluorescent protein (GFP) expression over three orders of inducer azide ion concentrations (0.01-5 mM) and rapidly induced GFP expression by over 600-fold compared to the uninduced control. Next, we showcase the superior performance of this engineered cyn-operon over the classical lac-operon for recombinant protein production. Finally, we highlight how this synthetic biology toolkit can enable glycoengineering-based applications by facilitating in vivo activity screening of mutant carbohydrate-active enzymes (CAZymes), called glycosynthases, using azido sugars as donor substrates.


Asunto(s)
Azidas/metabolismo , Bioingeniería/métodos , Proteínas Recombinantes/metabolismo , Regulón/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes/genética
20.
Curr Opin Biotechnol ; 66: 283-291, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33176229

RESUMEN

One of the stumbling blocks to advance the field of glycobiology has been the difficulty in synthesis of bespoke carbohydrate-based molecules like glycopolymers (e.g. human milk oligosaccharides) and glycoconjugates (e.g. glycosylated monoclonal antibodies). Recent strides towards using engineered Carbohydrate-Active enZymes (CAZymes) like glycosyl transferases, transglycosidases, and glycosynthases for glycans synthesis has allowed production of diverse glycans. Here, we discuss enzymatic routes for glycans biosynthesis and recent advances in protein engineering strategies that enable improvement of CAZyme specificity and catalytic turnover. We focus on rational and directed evolution methods that have been developed to engineer CAZymes. Finally, we discuss how improved CAZymes have been used in recent years to remodel and synthesize glycans for biotherapeutics and biotechnology related applications.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Carbohidratos , Humanos , Oligosacáridos , Polisacáridos , Ingeniería de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA