Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Med Phys ; 49(11): 7118-7149, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35833287

RESUMEN

BACKGROUND: Automatic segmentation of 3D objects in computed tomography (CT) is challenging. Current methods, based mainly on artificial intelligence (AI) and end-to-end deep learning (DL) networks, are weak in garnering high-level anatomic information, which leads to compromised efficiency and robustness. This can be overcome by incorporating natural intelligence (NI) into AI methods via computational models of human anatomic knowledge. PURPOSE: We formulate a hybrid intelligence (HI) approach that integrates the complementary strengths of NI and AI for organ segmentation in CT images and illustrate performance in the application of radiation therapy (RT) planning via multisite clinical evaluation. METHODS: The system employs five modules: (i) body region recognition, which automatically trims a given image to a precisely defined target body region; (ii) NI-based automatic anatomy recognition object recognition (AAR-R), which performs object recognition in the trimmed image without DL and outputs a localized fuzzy model for each object; (iii) DL-based recognition (DL-R), which refines the coarse recognition results of AAR-R and outputs a stack of 2D bounding boxes (BBs) for each object; (iv) model morphing (MM), which deforms the AAR-R fuzzy model of each object guided by the BBs output by DL-R; and (v) DL-based delineation (DL-D), which employs the object containment information provided by MM to delineate each object. NI from (ii), AI from (i), (iii), and (v), and their combination from (iv) facilitate the HI system. RESULTS: The HI system was tested on 26 organs in neck and thorax body regions on CT images obtained prospectively from 464 patients in a study involving four RT centers. Data sets from one separate independent institution involving 125 patients were employed in training/model building for each of the two body regions, whereas 104 and 110 data sets from the 4 RT centers were utilized for testing on neck and thorax, respectively. In the testing data sets, 83% of the images had limitations such as streak artifacts, poor contrast, shape distortion, pathology, or implants. The contours output by the HI system were compared to contours drawn in clinical practice at the four RT centers by utilizing an independently established ground-truth set of contours as reference. Three sets of measures were employed: accuracy via Dice coefficient (DC) and Hausdorff boundary distance (HD), subjective clinical acceptability via a blinded reader study, and efficiency by measuring human time saved in contouring by the HI system. Overall, the HI system achieved a mean DC of 0.78 and 0.87 and a mean HD of 2.22 and 4.53 mm for neck and thorax, respectively. It significantly outperformed clinical contouring in accuracy and saved overall 70% of human time over clinical contouring time, whereas acceptability scores varied significantly from site to site for both auto-contours and clinically drawn contours. CONCLUSIONS: The HI system is observed to behave like an expert human in robustness in the contouring task but vastly more efficiently. It seems to use NI help where image information alone will not suffice to decide, first for the correct localization of the object and then for the precise delineation of the boundary.


Asunto(s)
Inteligencia Artificial , Humanos , Tomografía Computarizada de Haz Cónico
2.
Med Phys ; 47(10): 5020-5031, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32761899

RESUMEN

PURPOSE: Automatic identification of consistently defined body regions in medical images is vital in many applications. In this paper, we describe a method to automatically demarcate the superior and inferior boundaries for neck, thorax, abdomen, and pelvis body regions in computed tomography (CT) images. METHODS: For any three-dimensional (3D) CT image I, following precise anatomic definitions, we denote the superior and inferior axial boundary slices of the neck, thorax, abdomen, and pelvis body regions by NS(I), NI(I), TS(I), TI(I), AS(I), AI(I), PS(I), and PI(I), respectively. Of these, by definition, AI(I) = PS(I), and so the problem reduces to demarcating seven body region boundaries. Our method consists of a two-step approach. In the first step, a convolutional neural network (CNN) is trained to classify each axial slice in I into one of nine categories: the seven body region boundaries, plus legs (defined as all axial slices inferior to PI(I)), and the none-of-the-above category. This CNN uses a multichannel approach to exploit the interslice contrast, providing the neural network with additional visual context at the body region boundaries. In the second step, to improve the predictions for body region boundaries that are very subtle and that exhibit low contrast, a recurrent neural network (RNN) is trained on features extracted by CNN, limited to a flexible window about the predictions from the CNN. RESULTS: The method is evaluated on low-dose CT images from 442 patient scans, divided into training and testing sets with a ratio of 70:30. Using only the CNN, overall absolute localization error for NS(I), NI(I), TS(I), TI(I), AS(I), AI(I), and PI(I) expressed in terms of number of slices (nS) is (mean ± SD): 0.61 ± 0.58, 1.05 ± 1.13, 0.31 ± 0.46, 1.85 ± 1.96, 0.57 ± 2.44, 3.42 ± 3.16, and 0.50 ± 0.50, respectively. Using the RNN to refine the CNN's predictions for select classes improved the accuracy of TI(I) and AI(I) to: 1.35 ± 1.71 and 2.83 ± 2.75, respectively. This model outperforms the results achieved in our previous work by 2.4, 1.7, 3.1, 1.1, and 2 slices, respectively for TS(I), TI(I), AS(I), AI(I) = PS(I), and PI(I) classes with statistical significance. The model trained on low-dose CT images was also tested on diagnostic CT images for NS(I), NI(I), and TS(I) classes; the resulting errors were: 1.48 ± 1.33, 2.56 ± 2.05, and 0.58 ± 0.71, respectively. CONCLUSIONS: Standardized body region definitions are a prerequisite for effective implementation of quantitative radiology, but the literature is severely lacking in the precise identification of body regions. The method presented in this paper significantly outperforms earlier works by a large margin, and the deviations of our results from ground truth are comparable to variations observed in manual labeling by experts. The solution presented in this work is critical to the adoption and employment of the idea of standardized body regions, and clears the path for development of applications requiring accurate demarcations of body regions. The work is indispensable for automatic anatomy recognition, delineation, and contouring for radiation therapy planning, as it not only automates an essential part of the process, but also removes the dependency on experts for accurately demarcating body regions in a study.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X , Abdomen , Humanos , Redes Neurales de la Computación , Pelvis/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...