Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Ecol ; 30(11): 2309-24, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15672673

RESUMEN

We examined herbivore-induced responses of alfalfa (Medicago sativa) and cotton (Gossypium hirsutum) under different CO2 conditions. Plants were grown under ambient (350 ppm) or elevated (700 ppm) CO2 levels, and were either damaged or undamaged by Spodoptera littoralis larvae. At harvest, growth of undamaged (control) plants was determined, and foliar chemical composition of both undamaged and damaged plants was analyzed. Cotton grew faster overall and showed a greater increase in growth in response to CO2 enrichment than did alfalfa. Elevated CO2 levels increased starch and decreased nitrogen levels in damaged alfalfa and undamaged cotton plants. Alfalfa saponin levels were significantly increased by elevated CO2 and damage. Regarding specific saponins, medicagenic acid bidesmoside (3GlcA,28AraRhaXyl medicagenate) concentrations were reduced by high CO2, whereas zanhic acid tridesmoside (3GlcGlcGlc,23Ara,28AraRhaXylApi Za) levels were unaffected by the treatments. Soyasaponin I (3GlcAGalRha soyasapogenol B) was only detected in minute amounts. Alfalfa flavonoid analyses showed that total flavonoid levels were similar between treatments, although free apigenin increased and apigenin glucoside (7-O-[2-O-feruloyl-beta-D-glucuronopyranozyl (1-->2)-O-8-D-glucuronopyranozyl]-4'-O-beta-D-glucuronopyranozide apigenin) decreased in CO2-enriched plants. In cotton, herbivore damage increased levels of total terpenoid aldehydes, gossypol, hemigossypolone, the heliocides H1 and H4, but not H2 and H3, whereas CO2 enrichment had no effect. These results demonstrate that combined effects of CO2 and herbivore damage vary between plant species, which has implications for the competitive balance within plant communities.


Asunto(s)
Dióxido de Carbono/farmacología , Conducta Alimentaria/efectos de los fármacos , Gossypium/química , Medicago sativa/química , Hojas de la Planta/química , Spodoptera/fisiología , Animales , Apigenina/análisis , Flavonoides/análisis , Glucósidos/análisis , Gossypium/metabolismo , Gossypium/parasitología , Interacciones Huésped-Parásitos/fisiología , Larva/parasitología , Medicago sativa/metabolismo , Medicago sativa/parasitología , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Saponinas/análisis , Triterpenos/análisis
2.
Oecologia ; 119(3): 389-399, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-28307762

RESUMEN

This study examined the effects of CO2 and light availability on sapling growth and foliar chemistry, and consequences for insect performance. Quaking aspen (Populus tremuloides Michx.), paper birch (Betula papyrifera Marsh.), and sugar maple (Acer saccharum Marsh.) were grown in controlled environment greenhouses under ambient or elevated CO2 (38.7 and 69.6 Pa), and low or high light availability (375 and 855 µmol m-2 s-1). Because CO2 and light are both required for carbon assimilation, the levels of these two resources are expected to have strong interactive effects on tree growth and secondary metabolism. Results from this study support that prediction, indicating that the relative effect of rising atmospheric CO2 concentrations on the growth and secondary metabolism of deciduous trees may be dependent on light environment. Trees in ambient CO2-low light environments had substantial levels of phytochemicals despite low growth rates; the concept of basal secondary metabolism is proposed to explain allocation to secondary metabolites under growth-limiting conditions. Differences between CO2 and light effects on the responses of growth and secondary metabolite levels suggest that relative allocation is not dependent solely on the amount of carbon assimilated. The relative growth rates and indices of feeding efficiency for gypsy moth (Lymantria dispar L.) larvae fed foliage from the experimental treatments showed no significant interactive effects of light and CO2, although some main effects and many host species interactions were significant. Gypsy moth performance was negatively correlated with CO2- and light-induced increases in the phenolic glycoside content of aspen foliage. Insects were not strongly affected, however, by treatment differences in the nutritional and secondary chemical components of birch and maple.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...