RESUMEN
BACKGROUND: Comprehensive antenatal care (ANC) must prioritize competent, evidence-based medical attention to ensure a positive experience and value for its users. Unfortunately, there is scarce evidence of implementing this holistic approach to ANC in low- and middle-income countries, leading to gaps in quality and accountability. This study assessed care competence, women's experiences during the first ANC visit, and the factors associated with these care attributes. METHODS AND FINDINGS: The study analyzed cross-sectional baseline data from the maternal eCohort study conducted in Mexico from August to December 2023. The study adapted the Quality Evidence for Health System Transformation (QuEST) network questionnaires to the Mexican context and validated them through expert group and cognitive interviews with women. Pregnant women aged 18 to 49 who had their first ANC visit with a family physician were enrolled in 48 primary clinics of the Instituto Mexicano del Seguro Social across 8 states. Care competence and women's experiences with care were the primary outcomes. The statistical analysis comprised descriptive statistics, multivariable linear and Poisson regressions. A total of 1,390 pregnant women were included in the study. During their first ANC visit, women received only 67.7% of necessary clinical actions on average, and 52% rated their ANC experience as fair or poor. Women with previous pregnancies (adjusted regression coefficient [aCoef.] -3.55; (95% confidence intervals [95% CIs]): -4.88, -2.22, p < 0.001), at risk of depression (aCoef. -3.02; 95% CIs: -5.61, -0.43, p = 0.023), those with warning signs (aCoef. -2.84; 95% CIs: -4.65, -1.03, p = 0.003), common pregnancy discomforts (aCoef. -1.91; 95% CIs: -3.81, -0.02, p = 0.048), or those who had a visit duration of less than 20 minutes (<15 minutes: aCoef. -7.58; 95% CIs: -10.21, -4.95, p < 0.001 and 15 to 19 minutes: aCoef. -2.73; 95% CIs: -4.79, -0.67, p = 0.010) and received ANC in the West and Southeast regions (aCoef. -5.15; 95% CIs: -7.64, -2.66, p < 0.001 and aCoef. -5.33; 95% CIs: -7.85, -2.82, p < 0.001, respectively) had a higher probability of experiencing poorer care competence. Higher care competence (adjusted prevalence ratio [aPR] 1.004; 95% CIs:1.002, 1.005, p < 0.001) and receiving care in a small clinic (aPR 1.19; 95% CIs: 1.06, 1.34, p = 0.003) compared to a medium-sized clinic were associated with a better first ANC visit experience, while common pregnancy discomforts (aPR 0.94; 95% CIs: 0.89, 0.98, p = 0.005) and shorter visit length (aPR 0.94; 95% CIs: 0.88, 0.99, p = 0.039) were associated with lower women's experience. The primary limitation of the study is that participants' responses may be influenced by social desirability bias, leading them to provide socially acceptable responses. CONCLUSIONS: We found important gaps in adherence to ANC standards and that care competence during the first ANC visit is an important predictor of positive user experience. To inform quality improvement efforts, IMSS should institutionalize the routine monitoring of ANC competencies and ANC user experience. This will help identify poorly performing facilities and providers and address gaps in the provision of evidence-based and women-centered care.
Asunto(s)
Atención Prenatal , Humanos , Femenino , México , Adulto , Embarazo , Estudios Transversales , Adulto Joven , Adolescente , Estudios de Cohortes , Persona de Mediana Edad , Encuestas y Cuestionarios , Competencia Clínica , Satisfacción del Paciente/estadística & datos numéricosRESUMEN
Adult stem cells occupy a niche that contributes to their function, but how stem cells rebuild their microenvironment after injury remains an open-ended question. Herein, biomaterial-based systems and metabolic labeling are utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts are observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, muscle stem cells increased nascent matrix deposition with activation kinetics. Reducing the ability to deposit nascent matrix by an inhibitor of vesicle trafficking (Exo-1) attenuated muscle stem cell function and mimicked impairments observed from muscle stem cells isolated from old muscles. Old muscle stem cells are observed to deposit less nascent matrix than young muscle stem cells, which is rescued with therapeutic supplementation of insulin-like growth factors. These results highlight the role of nascent matrix production with muscle stem cell activation.
Asunto(s)
Matriz Extracelular , Hidrogeles , Matriz Extracelular/metabolismo , Animales , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Diferenciación Celular , Células CultivadasRESUMEN
Aging is associated with a decline in stem cell functionality and number across the organism. In this study, we aimed to further unravel Muscle Stem Cells (MuSCs) aging by assessing how systemic factors influence MuSC fate decisions through long-term epigenetic landscape remodelling. As aging is intricately linked to a pro-inflammatory shift, we studied the epigenetic effects of inflammatory signals in MuSCs and measured decreased H4K20me1 levels. This loss disrupts MuSC quiescence, largely through epigenetic silencing of Notch target genes. In the setting of inflammatory signals or aging, the lack of Kmt5a and the subsequent absence of de novoH4K20me1 culminate in cell death by ferroptosis. Aged MuSCs manifest abnormal iron metabolism and reduced Gpx4 levels, resulting in the accumulation of intracellular iron, increased reactive oxygen species, genomic instability, and lipid peroxidation. We showed that ferroptosis is the predominant mode of cell death in aged MuSCs, with remarkably high levels of lipid peroxidation; a phenomenon we also observed in aged hematopoietic stem cells. Implementing preventative strategies to inhibit systemic inflammation prevented aged MuSC ferroptosis, preserving their numbers and regenerative capabilities. This intervention significantly enhanced aged muscle regeneration and strength recovery and extended both lifespan and healthspan in mice. This study delineates a previously underappreciated fate trajectory for stem cell aging, and offers meaningful insights into the treatment of age-related disorders.
RESUMEN
Adult stem cells occupy a niche that contributes to their function, but how stem cells remodel their microenvironment remains an open-ended question. Herein, biomaterials-based systems and metabolic labeling were utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts were observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, the increased nascent matrix deposition was associated with stem cell activation. Reducing the ability to deposit nascent matrix in muscle stem cells attenuated function and mimicked impairments observed from muscle stem cells isolated from old aged muscles, which could be rescued with therapeutic supplementation of insulin-like growth factors. These results highlight how nascent matrix production is critical for maintaining healthy stem cell function.
RESUMEN
The acute traumatic or surgical loss of skeletal muscle, known as volumetric muscle loss (VML), is a devastating type of injury that results in exacerbated and persistent inflammation followed by fibrosis. The mechanisms that mediate the magnitude and duration of the inflammatory response and ensuing fibrosis after VML remain understudied, and as such, the development of regenerative therapies has been limited. To address this need, we profiled how lipid mediators, which are potent regulators of the immune response after injury, varied with VML injuries that heal or result in fibrosis. We observed that non-healing VML injuries displayed increased pro-inflammatory eicosanoids and a lack of pro-resolving lipid mediators. Treatment of VML with a pro-resolving lipid mediator synthesized from docosahexaenoic acid, called Maresin 1, ameliorated fibrosis through reduction of neutrophils and macrophages and enhanced recovery of muscle strength. These results expand our knowledge of the dysregulated immune response that develops after VML and identify a novel immuno-regenerative therapeutic modality in Maresin 1.
Asunto(s)
Ácidos Docosahexaenoicos , Enfermedades Musculares , Humanos , Músculo Esquelético/fisiología , Enfermedades Musculares/patología , FibrosisRESUMEN
Hidradenitis suppurativa (HS) is a complex inflammatory skin disease with undefined mechanistic underpinnings. Here, we investigated HS epithelial cells and demonstrated that HS basal progenitors modulate their lineage restriction and give rise to pathogenic keratinocyte clones, resulting in epidermal hyperproliferation and dysregulated inflammation in HS. When comparing to healthy epithelial stem/progenitor cells, in HS, we identified changes in gene signatures that revolve around the mitotic cell cycle, DNA damage response and repair, as well as cell-cell adhesion and chromatin remodeling. By reconstructing cell differentiation trajectory and CellChat modeling, we identified a keratinocyte population specific to HS. This population is marked by S100A7/8/9 and KRT6 family members, triggering IL1, IL10, and complement inflammatory cascades. These signals, along with HS-specific proinflammatory cytokines and chemokines, contribute to the recruitment of certain immune cells during the disease progression. Furthermore, we revealed a previously uncharacterized role of S100A8 in regulating the local chromatin environment of target loci in HS keratinocytes. Through the integration of genomic and epigenomic datasets, we identified genome-wide chromatin rewiring alongside the switch of transcription factors (TFs), which mediated HS transcriptional profiles. Importantly, we identified numerous clinically relevant inflammatory enhancers and their coordinated TFs in HS basal CD49fhigh cells. The disruption of the S100A enhancer using the CRISPR/Cas9-mediated approach or the pharmacological inhibition of the interferon regulatory transcription factor 3 (IRF3) efficiently reduced the production of HS-associated inflammatory regulators. Our study not only uncovers the plasticity of epidermal progenitor cells in HS but also elucidates the epigenetic mechanisms underlying HS pathogenesis.
Asunto(s)
Hidradenitis Supurativa , Humanos , Hidradenitis Supurativa/genética , Piel/metabolismo , Epigenómica , Epigénesis Genética , Células Madre/metabolismo , Cromatina/metabolismoRESUMEN
Brain metastases are the most lethal progression event, in part because the biological processes underpinning brain metastases are poorly understood. There is a paucity of realistic models of metastasis, as current in vivo murine models are slow to manifest metastasis. We set out to delineate metabolic and secretory modulators of brain metastases by utilizing two models consisting of in vitro microfluidic devices: 1) a blood brain niche (BBN) chip that recapitulates the blood-brain-barrier and niche; and 2) a migration chip that assesses cell migration. We report secretory cues provided by the brain niche that attract metastatic cancer cells to colonize the brain niche region. Astrocytic Dkk-1 is increased in response to brain-seeking breast cancer cells and stimulates cancer cell migration. Brain-metastatic cancer cells under Dkk-1 stimulation increase gene expression of FGF-13 and PLCB1. Further, extracellular Dkk-1 modulates cancer cell migration upon entering the brain niche.
RESUMEN
Somatic cell fate is an outcome set by the activities of specific transcription factors and the chromatin landscape and is maintained by gene silencing of alternate cell fates through physical interactions with the nuclear scaffold. Here, we evaluate the role of the nuclear scaffold as a guardian of cell fate in human fibroblasts by comparing the effects of transient loss (knockdown) and mutation (progeria) of functional Lamin A/C, a core component of the nuclear scaffold. We observed that Lamin A/C deficiency or mutation disrupts nuclear morphology, heterochromatin levels, and increases access to DNA in lamina-associated domains. Changes in Lamin A/C were also found to impact the mechanical properties of the nucleus when measured by a microfluidic cellular squeezing device. We also show that transient loss of Lamin A/C accelerates the kinetics of cellular reprogramming to pluripotency through opening of previously silenced heterochromatin domains while genetic mutation of Lamin A/C into progerin induces a senescent phenotype that inhibits the induction of reprogramming genes. Our results highlight the physical role of the nuclear scaffold in safeguarding cellular fate.
RESUMEN
Age-related skeletal muscle atrophy or sarcopenia is a significant societal problem that is becoming amplified as the world's population continues to increase. The regeneration of damaged skeletal muscle is mediated by muscle stem cells, but in old age muscle stem cells become functionally attenuated. The molecular mechanisms that govern muscle stem cell aging encompass changes across multiple regulatory layers and are integrated by the three-dimensional organization of the genome. To quantitatively understand how hierarchical chromatin architecture changes during muscle stem cell aging, we generated 3D chromatin conformation maps (Hi-C) and integrated these datasets with multi-omic (chromatin accessibility and transcriptome) profiles from bulk populations and single cells. We observed that muscle stem cells display static behavior at global scales of chromatin organization during aging and extensive rewiring of local contacts at finer scales that were associated with variations in transcription factor binding and aberrant gene expression. These data provide insights into genome topology as a regulator of molecular function in stem cell aging.
Asunto(s)
Senescencia Celular , Genoma , Senescencia Celular/genética , Cromatina/genética , Músculo EsqueléticoRESUMEN
Volumetric muscle loss (VML) is an acute trauma that results in persistent inflammation, supplantation of muscle tissue with fibrotic scarring, and decreased muscle function. The cell types, nature of cellular communication, and tissue locations that drive the aberrant VML response have remained elusive. Herein, we used spatial transcriptomics on a mouse model of VML and observed that VML engenders a unique spatial profibrotic pattern driven by crosstalk between fibrotic and inflammatory macrophages and mesenchymal-derived cells. The dysregulated response impinged on muscle stem cell-mediated repair, and targeting this circuit resulted in increased regeneration and reductions in inflammation and fibrosis. Collectively, these results enhance our understanding of the cellular crosstalk that drives aberrant regeneration and provides further insight into possible avenues for fibrotic therapy exploration.
Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Ratones , Animales , Músculo Esquelético/metabolismo , Enfermedades Musculares/patología , Regeneración , Células Madre , Perfilación de la Expresión Génica , FibrosisRESUMEN
OBJECTIVE: Our objective was to identify macrophage subpopulations and gene signatures associated with regenerative or fibrotic healing across different musculoskeletal injury types. BACKGROUND: Subpopulations of macrophages are hypothesized to fine tune the immune response after damage, promoting either normal regenerative, or aberrant fibrotic healing. METHODS: Mouse single-cell RNA sequencing data before and after injury were assembled from models of musculoskeletal injury, including regenerative and fibrotic mouse volumetric muscle loss (VML), regenerative digit tip amputation, and fibrotic heterotopic ossification. R packages Harmony , MacSpectrum , and Seurat were used for data integration, analysis, and visualizations. RESULTS: There was a substantial overlap between macrophages from the regenerative VML (2 mm injury) and regenerative bone models, as well as a separate overlap between the fibrotic VML (3 mm injury) and fibrotic bone (heterotopic ossification) models. We identified 2 fibrotic-like (FL 1 and FL 2) along with 3 regenerative-like (RL 1, RL 2, and RL 3) subpopulations of macrophages, each of which was transcriptionally distinct. We found that regenerative and fibrotic conditions had similar compositions of proinflammatory and anti-inflammatory macrophages, suggesting that macrophage polarization state did not correlate with healing outcomes. Receptor/ligand analysis of macrophage-to-mesenchymal progenitor cell crosstalk showed enhanced transforming growth factor ß in fibrotic conditions and enhanced platelet-derived growth factor signaling in regenerative conditions. CONCLUSION: Characterization of macrophage subtypes could be used to predict fibrotic responses following injury and provide a therapeutic target to tune the healing microenvironment towards more regenerative conditions.
Asunto(s)
Músculo Esquelético , Osificación Heterotópica , Ratones , Animales , Macrófagos , Cicatrización de Heridas/fisiología , Factor de Crecimiento Derivado de PlaquetasRESUMEN
Innovative methodologies, such as microwave-assisted reaction, can help to valorize lignin with higher productivity and better energy efficiency. In this work, microwave heating was tested in the wet peroxide oxidation of three lignins (Indulin AT, Lignol, and Eucalyptus globulus lignins) as a novel methodology to obtain C4 dicarboxylic acids. The effect of temperature, time, and catalyst type (TS-1 or Fe-TS1) was evaluated in the production of these acids. The TS-1 catalyst improved succinic acid yield, achieving up to 9.4 wt % for Lignol lignin. Moreover, the microwave heating specifically enhanced Lignol conversion to malic acid (34 wt %), even without catalyst, showing to be an attractive path for the future valorization of organosolv lignins. Overall, compared to conventional heating, microwave heating originated a rapid lignin conversion. Nevertheless, for prolonged times, conventional heating led to better results for some target products, e.g., malic and succinic acids.
RESUMEN
Volumetric muscle loss (VML) overwhelms the innate regenerative capacity of mammalian skeletal muscle (SkM), leading to numerous disabilities and reduced quality of life. Immune cells are critical responders to muscle injury and guide tissue resident stem cell and progenitor-mediated myogenic repair. However, how immune cell infiltration and intercellular communication networks with muscle stem cells are altered following VML and drive pathological outcomes remains underexplored. Herein, we contrast the cellular and molecular mechanisms of VML injuries that result in the fibrotic degeneration or regeneration of SkM. Following degenerative VML injuries, we observed the heightened infiltration of natural killer (NK) cells as well as the persistence of neutrophils beyond 2 wk postinjury. Functional validation of NK cells revealed an antagonistic role in neutrophil accumulation in part via inducing apoptosis and CCR1-mediated chemotaxis. The persistent infiltration of neutrophils in degenerative VML injuries was found to contribute to impairments in muscle stem cell regenerative function, which was also attenuated by transforming growth factor beta 1 (TGFß1). Blocking TGFß signaling reduced neutrophil accumulation and fibrosis and improved muscle-specific force. Collectively, these results enhance our understanding of immune cellstem cell cross talk that drives regenerative dysfunction and provide further insight into possible avenues for fibrotic therapy exploration.
Asunto(s)
Células Asesinas Naturales , Músculo Esquelético , Enfermedades Musculares , Neutrófilos , Regeneración , Células Satélite del Músculo Esquelético , Animales , Fibrosis , Células Asesinas Naturales/inmunología , Ratones , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Enfermedades Musculares/inmunología , Enfermedades Musculares/patología , Infiltración Neutrófila , Neutrófilos/inmunología , Regeneración/inmunología , Células Satélite del Músculo Esquelético/inmunología , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
The health and homeostasis of skeletal muscle are preserved by a population of tissue-resident muscle stem cells (MuSCs) that maintain a state of mitotic and metabolic quiescence in adult tissues. The capacity of MuSCs to preserve the quiescent state declines with aging and metabolic insults, promoting premature activation and stem cell exhaustion. Sestrins are a class of stress-inducible proteins that act as antioxidants and inhibit the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Despite these pivotal roles, the role of Sestrins has not been explored in adult stem cells. We show that SESTRIN1,2 loss results in hyperactivation of the mTORC1 complex, increased propensity to enter the cell cycle, and shifts in metabolic flux. Aged SESTRIN1,2 knockout mice exhibited loss of MuSCs and a reduced ability to regenerate injured muscle. These findings demonstrate that Sestrins help maintain metabolic pathways in MuSCs that protect quiescence against aging.
Asunto(s)
Metabolismo Energético , Homeostasis , Músculo Esquelético/citología , Sestrinas/genética , Células Madre/metabolismo , Factores de Edad , Animales , Biomarcadores , Técnicas de Cultivo de Célula , Separación Celular/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunohistoquímica , Inmunofenotipificación , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados , Regeneración , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Sestrinas/deficiencia , Sestrinas/metabolismo , Células Madre/citologíaRESUMEN
Lignin is the second most abundant component, next to cellulose, in lignocellulosic biomass. Large amounts of this polymer are produced annually in the pulp and paper industries as a coproduct from the cooking process-most of it burned as fuel for energy. Strategies regarding lignin valorization have attracted significant attention over the recent decades due to lignin's aromatic structure. Oxidative depolymerization allows converting lignin into added-value compounds, as phenolic monomers and/or dicarboxylic acids, which could be an excellent alternative to aromatic petrochemicals. However, the major challenge is to enhance the reactivity and selectivity of the lignin structure towards depolymerization and prevent condensation reactions. This review includes a comprehensive overview of the main contributions of lignin valorization through oxidative depolymerization to produce added-value compounds (vanillin and syringaldehyde) that have been developed over the recent decades in the LSRE group. An evaluation of the valuable products obtained from oxidation in an alkaline medium with oxygen of lignins and liquors from different sources and delignification processes is also provided. A review of C4 dicarboxylic acids obtained from lignin oxidation is also included, emphasizing catalytic conversion by O2 or H2O2 oxidation.
RESUMEN
Resumen La prematurez (PM) neonatal es un problema mayor de salud pública en el mundo, debido a su frecuencia de presentación y los años de vida potencialmente perdidos; además, es la principal causa de muerte en menores de cinco años. Entre las consecuencias negativas de la PM están las discapacidades del aprendizaje, visual y auditiva. Múltiples son los factores asociados a la PM; algunos pueden ser detectados y modificados de forma oportuna en las consultas prenatales y también, en las preconcepcionales. Por otro lado, la PM no es solamente responsabilidad del prestador de los servicios de salud, sino también del sistema de salud, el cual, debe otorgar los recursos mínimos necesarios para monitorear y mantener a la embarazada en un estado óptimo de salud para evitarla, y en caso de presentarse, debe contar con la infraestructura hospitalaria básica que permita la viabilidad del producto y evitar su muerte. Aunado a lo anterior, se debe de considerar la responsabilidad de la paciente y su pareja, debido a que en ellos recae la obligación de llevar un estilo de vida saludable y acudir a las consultas preconcepcionales y control prenatal.
Abstract Neonatal prematurity (MP) is a major public health problem in the world, due to its presentation frequency and the years of life potentially lost; In addition, it is the main cause of death in children under five years of age. Among the negative consequences of MP are learning, visual and hearing disabilities. There are multiple factors associated with MP; some can be detected and modified in a timely manner in prenatal consultations and in preconception. On the other hand, MP is not only responsibility of the health service provider, but also of the health system, which must grant the minimum resources necessary to monitor and maintain the pregnant woman in an optimal state of health to avoid it, and if it occurs, the hospital must have the basic infrastructure that allows the viability of the product and prevents its death. In addition, the responsibility of the patient and her partner must be considered since they are obliged to lead a healthy lifestyle and attend preconception consultations and prenatal care.
RESUMEN
During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs); however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing. We show that a subset of MuSCs specifically engraft in a position proximal to the neuromuscular junction (NMJ), the synapse between myofibers and motor neurons, in healthy young adult muscles. In aging and in a mouse model of neuromuscular degeneration (Cu/Zn superoxide dismutase knockout - Sod1-/-), this localized engraftment behavior was reduced. Genetic rescue of motor neurons in Sod1-/- mice reestablished integrity of the NMJ in a manner akin to young muscle and partially restored MuSC ability to engraft into positions proximal to the NMJ. Using single cell RNA-sequencing of MuSCs isolated from aged muscle, we demonstrate that a subset of MuSCs are molecularly distinguishable from MuSCs responding to myofiber injury and share similarity to synaptic myonuclei. Collectively, these data reveal unique features of MuSCs that respond to synaptic perturbations caused by aging and other stressors.
Asunto(s)
Envejecimiento , Músculo Esquelético/lesiones , Mioblastos Esqueléticos/fisiología , Unión Neuromuscular/fisiología , Superóxido Dismutasa-1/deficiencia , Animales , Femenino , Masculino , Ratones NoqueadosRESUMEN
Specialized pro-resolving mediators actively limit inflammation and support tissue regeneration, but their role in age-related muscle dysfunction has not been explored. We profiled the mediator lipidome of aging muscle via liquid chromatography-tandem mass spectrometry and tested whether treatment with the pro-resolving mediator resolvin D1 (RvD1) could rejuvenate the regenerative ability of aged muscle. Aged mice displayed chronic muscle inflammation and this was associated with a basal deficiency of pro-resolving mediators 8-oxo-RvD1, resolvin E3, and maresin 1, as well as many anti-inflammatory cytochrome P450-derived lipid epoxides. Following muscle injury, young and aged mice produced similar amounts of most pro-inflammatory eicosanoid metabolites of cyclooxygenase (e.g., prostaglandin E2 ) and 12-lipoxygenase (e.g., 12-hydroxy-eicosatetraenoic acid), but aged mice produced fewer markers of pro-resolving mediators including the lipoxins (15-hydroxy-eicosatetraenoic acid), D-resolvins/protectins (17-hydroxy-docosahexaenoic acid), E-resolvins (18-hydroxy-eicosapentaenoic acid), and maresins (14-hydroxy-docosahexaenoic acid). Similar absences of downstream pro-resolving mediators including lipoxin A4 , resolvin D6, protectin D1/DX, and maresin 1 in aged muscle were associated with greater inflammation, impaired myofiber regeneration, and delayed recovery of strength. Daily intraperitoneal injection of RvD1 had minimal impact on intramuscular leukocyte infiltration and myofiber regeneration but suppressed inflammatory cytokine expression, limited fibrosis, and improved recovery of muscle function. We conclude that aging results in deficient local biosynthesis of specialized pro-resolving mediators in muscle and that immunoresolvents may be attractive novel therapeutics for the treatment of muscular injuries and associated pain in the elderly, due to positive effects on recovery of muscle function without the negative side effects on tissue regeneration of non-steroidal anti-inflammatory drugs.
Asunto(s)
Envejecimiento/fisiología , Inflamación/metabolismo , Espectrometría de Masas/métodos , Metabolismo/fisiología , Músculo Esquelético/metabolismo , Ingeniería de Tejidos/métodos , Animales , Humanos , RatonesRESUMEN
The interactions of derivatives of lumisterol (L3) and vitamin D3 (D3) with liver X receptors (LXRs) were investigated. Molecular docking using crystal structures of the ligand binding domains (LBDs) of LXRα and ß revealed high docking scores for L3 and D3 hydroxymetabolites, similar to those of the natural ligands, predicting good binding to the receptor. RNA sequencing of murine dermal fibroblasts stimulated with D3-hydroxyderivatives revealed LXR as the second nuclear receptor pathway for several D3-hydroxyderivatives, including 1,25(OH)2D3. This was validated by their induction of genes downstream of LXR. L3 and D3-derivatives activated an LXR-response element (LXRE)-driven reporter in CHO cells and human keratinocytes, and by enhanced expression of LXR target genes. L3 and D3 derivatives showed high affinity binding to the LBD of the LXRα and ß in LanthaScreen TR-FRET LXRα and ß coactivator assays. The majority of metabolites functioned as LXRα/ß agonists; however, 1,20,25(OH)3D3, 1,25(OH)2D3, 1,20(OH)2D3 and 25(OH)D3 acted as inverse agonists of LXRα, but as agonists of LXRß. Molecular dynamics simulations for the selected compounds, including 1,25(OH)2D3, 1,20(OH)2D3, 25(OH)D3, 20(OH)D3, 20(OH)L3 and 20,22(OH)2L3, showed different but overlapping interactions with LXRs. Identification of D3 and L3 derivatives as ligands for LXRs suggests a new mechanism of action for these compounds.
Asunto(s)
Ergosterol/farmacología , Receptores X del Hígado/metabolismo , Vitamina D/farmacología , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Animales Recién Nacidos , Células CHO , Calcitriol , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Biología Computacional , Cricetulus , Dermis/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Enlace de Hidrógeno , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Ligandos , Receptores X del Hígado/química , Receptores X del Hígado/genética , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína , Transporte de Proteínas/efectos de los fármacos , RNA-Seq , Electricidad Estática , TermodinámicaRESUMEN
All multicellular organisms rely on intercellular communication networks to coordinate physiological functions. As members of a dynamic social network, each cell receives, processes, and redistributes biological information to define and maintain tissue homeostasis. Uncovering the molecular programs underlying these processes is critical for prevention of disease and aging and development of therapeutics. The study of intercellular communication requires techniques that reduce the scale and complexity of in vivo biological networks while resolving the molecular heterogeneity in "omic" layers that contribute to cell state and function. Recent advances in microengineering and high-throughput genomics offer unprecedented spatiotemporal control over cellular interactions and the ability to study intercellular communication in a high-throughput and mechanistic manner. Herein, this review discusses how salient engineered approaches and sequencing techniques can be applied to understand collective cell behavior and tissue functions.