Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 297, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807218

RESUMEN

BACKGROUND: Endoplasmic reticulum (ER) stress-mediated increases in the hepatic levels of the very low-density lipoprotein (VLDL) receptor (VLDLR) promote hepatic steatosis by increasing the delivery of triglyceride-rich lipoproteins to the liver. Here, we examined whether the NAD(+)-dependent deacetylase sirtuin 1 (SIRT1) regulates hepatic lipid accumulation by modulating VLDLR levels and the subsequent uptake of triglyceride-rich lipoproteins. METHODS: Rats fed with fructose in drinking water, Sirt1-/- mice, mice treated with the ER stressor tunicamycin with or without a SIRT1 activator, and human Huh-7 hepatoma cells transfected with siRNA or exposed to tunicamycin or different inhibitors were used. RESULTS: Hepatic SIRT1 protein levels were reduced, while those of VLDLR were upregulated in the rat model of metabolic dysfunction-associated steatotic liver disease (MASLD) induced by fructose-drinking water. Moreover, Sirt1-/- mice displayed increased hepatic VLDLR levels that were not associated with ER stress, but were accompanied by an increased expression of hypoxia-inducible factor 1α (HIF-1α)-target genes. The pharmacological inhibition or gene knockdown of SIRT1 upregulated VLDLR protein levels in the human Huh-7 hepatoma cell line, with this increase abolished by the pharmacological inhibition of HIF-1α. Finally, SIRT1 activation prevented the increase in hepatic VLDLR protein levels in mice treated with the ER stressor tunicamycin. CONCLUSIONS: Overall, these findings suggest that SIRT1 attenuates fatty liver development by modulating hepatic VLDLR levels.


Asunto(s)
Hígado , Receptores de LDL , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Humanos , Hígado/metabolismo , Hígado/efectos de los fármacos , Receptores de LDL/metabolismo , Receptores de LDL/genética , Ratones , Masculino , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratas , Línea Celular Tumoral , Ratones Noqueados , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Ratones Endogámicos C57BL , Tunicamicina/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratas Sprague-Dawley
2.
Biomed Pharmacother ; 167: 115623, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783154

RESUMEN

Elafibranor is a dual peroxisome proliferator-activated receptor (PPAR)α and ß/δ agonist that has reached a phase III clinical trial for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we examined the effects of elafibranor in mice fed a choline-deficient high-fat diet (CD-HFD), a model of metabolic dysfunction-associated steatohepatitis (MASH) that presents obesity and insulin resistance. Our findings revealed that elafibranor treatment ameliorated steatosis, inflammation, and fibrogenesis in the livers of CD-HFD-fed mice. Unexpectedly, elafibranor also increased the levels of the epithelial-mesenchymal transition (EMT)-promoting protein S100A4 via PPARß/δ activation. The increase in S100A4 protein levels caused by elafibranor was accompanied by changes in the levels of markers associated with the EMT program. The S100A4 induction caused by elafibranor was confirmed in the BRL-3A rat liver cells and a mouse primary hepatocyte culture. Furthermore, elafibranor reduced the levels of ASB2, a protein that promotes S100A4 degradation, while ASB2 overexpression prevented the stimulating effect of elafibranor on S100A4. Collectively, these findings reveal an unexpected hepatic effect of elafibranor on increasing S100A4 and promoting the EMT program.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , PPAR delta , PPAR-beta , Animales , Ratones , Ratas , Dieta Alta en Grasa , Transición Epitelial-Mesenquimal , Hígado , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR delta/metabolismo , PPAR-beta/agonistas , PPAR-beta/metabolismo , PPAR-beta/uso terapéutico
3.
Pharmacol Res ; 187: 106578, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36435271

RESUMEN

BACKGROUND AND AIMS: Metformin, the most prescribed drug for the treatment of type 2 diabetes mellitus, has been recently reported to promote weight loss by upregulating the anorectic cytokine growth differentiation factor 15 (GDF15). Since the antidiabetic effects of metformin are mostly mediated by the activation of AMPK, a key metabolic sensor in energy homeostasis, we examined whether the activation of this kinase by metformin was dependent on GDF15. METHODS: Cultured hepatocytes and myotubes, and wild-type and Gdf15-/- mice were utilized in a series of studies to investigate the involvement of GDF15 in the activation of AMPK by metformin. RESULTS: A low dose of metformin increased GDF15 levels without significantly reducing body weight or food intake, but it ameliorated glucose intolerance and activated AMPK in the liver and skeletal muscle of wild-type mice but not Gdf15-/- mice fed a high-fat diet. Cultured hepatocytes and myotubes treated with metformin showed AMPK-mediated increases in GDF15 levels independently of its central receptor GFRAL, while Gdf15 knockdown blunted the effect of metformin on AMPK activation, suggesting that AMPK is required for the metformin-mediated increase in GDF15, which in turn is needed to sustain the full activation of this kinase independently of the CNS. CONCLUSION: Overall, these findings uncover a novel mechanism through which GDF15 upregulation by metformin is involved in achieving and sustaining full AMPK activation by this drug independently of the CNS.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Tipo 2 , Factor 15 de Diferenciación de Crecimiento , Hipoglucemiantes , Metformina , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Factor 15 de Diferenciación de Crecimiento/genética , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Retroalimentación Fisiológica
4.
Trends Endocrinol Metab ; 33(11): 741-754, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36151002

RESUMEN

Although a large number of drugs are available for the treatment of type 2 diabetes mellitus (T2DM), many patients do not achieve adequate disease control despite adhering to medication. Recent findings indicate that the pharmacological modulation of the stress-induced cytokine growth differentiation factor 15 (GDF15) shows promise for the treatment of T2DM. GDF15 suppresses appetite and reduces inflammation, increases thermogenesis and lipid catabolism, sustains AMP-activated protein kinase (AMPK) activity, and ameliorates insulin resistance and hepatic steatosis. In addition, circulating GDF15 levels are elevated in response to several antidiabetic drugs, including metformin, with GDF15 mediating some of their effects. Here, we review the mechanistic insights into the beneficial effects of recently explored therapeutic approaches that target GDF15 for the treatment of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Factor 15 de Diferenciación de Crecimiento/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Hipoglucemiantes/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Lípidos
5.
Cell Commun Signal ; 20(1): 53, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428325

RESUMEN

BACKGROUND: Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) downregulation in skeletal muscle contributes to insulin resistance and type 2 diabetes mellitus. Here, we examined the effects of endoplasmic reticulum (ER) stress on PGC-1α levels in muscle and the potential mechanisms involved. METHODS: The human skeletal muscle cell line LHCN-M2 and mice exposed to different inducers of ER stress were used. RESULTS: Palmitate- or tunicamycin-induced ER stress resulted in PGC-1α downregulation and enhanced expression of activating transcription factor 4 (ATF4) in human myotubes and mouse skeletal muscle. Overexpression of ATF4 decreased basal PCG-1α expression, whereas ATF4 knockdown abrogated the reduction of PCG-1α caused by tunicamycin in myotubes. ER stress induction also activated mammalian target of rapamycin (mTOR) in myotubes and reduced the nuclear levels of cAMP response element-binding protein (CREB)-regulated transcription co-activator 2 (CRTC2), a positive modulator of PGC-1α transcription. The mTOR inhibitor torin 1 restored PCG-1α and CRTC2 protein levels. Moreover, siRNA against S6 kinase, an mTORC1 downstream target, prevented the reduction in the expression of CRTC2 and PGC-1α caused by the ER stressor tunicamycin. CONCLUSIONS: Collectively, these findings demonstrate that ATF4 and the mTOR-CRTC2 axis regulates PGC-1α transcription under ER stress conditions in skeletal muscle, suggesting that its inhibition might be a therapeutic target for insulin resistant states. Video Abstract.


Asunto(s)
Factor de Transcripción Activador 4 , Diabetes Mellitus Tipo 2 , Estrés del Retículo Endoplásmico , Músculo Esquelético , Serina-Treonina Quinasas TOR , Factores de Transcripción , Factor de Transcripción Activador 4/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Abajo , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Tunicamicina/metabolismo , Tunicamicina/farmacología
6.
Cell Rep ; 36(6): 109501, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380027

RESUMEN

Peroxisome proliferator-activated receptor ß/δ (PPARß/δ) activates AMP-activated protein kinase (AMPK) and plays a crucial role in glucose and lipid metabolism. Here, we examine whether PPARß/δ activation effects depend on growth differentiation factor 15 (GDF15), a stress response cytokine that regulates energy metabolism. Pharmacological PPARß/δ activation increases GDF15 levels and ameliorates glucose intolerance, fatty acid oxidation, endoplasmic reticulum stress, and inflammation, and activates AMPK in HFD-fed mice, whereas these effects are abrogated by the injection of a GDF15 neutralizing antibody and in Gdf15-/- mice. The AMPK-p53 pathway is involved in the PPARß/δ-mediated increase in GDF15, which in turn activates again AMPK. Consistently, Gdf15-/- mice show reduced AMPK activation in skeletal muscle, whereas GDF15 administration results in AMPK activation in this organ. Collectively, these data reveal a mechanism by which PPARß/δ activation increases GDF15 levels via AMPK and p53, which in turn mediates the metabolic effects of PPARß/δ by sustaining AMPK activation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Adenilato Quinasa/metabolismo , Animales , Línea Celular , Estrés del Retículo Endoplásmico , Activación Enzimática , Factor 15 de Diferenciación de Crecimiento/deficiencia , Inflamación/patología , Insulina/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
7.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34445261

RESUMEN

The current treatment options for type 2 diabetes mellitus do not adequately control the disease in many patients. Consequently, there is a need for new drugs to prevent and treat type 2 diabetes mellitus. Among the new potential pharmacological strategies, activators of peroxisome proliferator-activated receptor (PPAR)ß/δ show promise. Remarkably, most of the antidiabetic effects of PPARß/δ agonists involve AMP-activated protein kinase (AMPK) activation. This review summarizes the recent mechanistic insights into the antidiabetic effects of the PPARß/δ-AMPK pathway, including the upregulation of glucose uptake, muscle remodeling, enhanced fatty acid oxidation, and autophagy, as well as the inhibition of endoplasmic reticulum stress and inflammation. A better understanding of the mechanisms underlying the effects resulting from the PPARß/δ-AMPK pathway may provide the basis for the development of new therapies in the prevention and treatment of insulin resistance and type 2 diabetes mellitus.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevención & control , Resistencia a la Insulina , PPAR delta/metabolismo , PPAR-beta/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Diabetes Mellitus Tipo 2/genética , Humanos , PPAR delta/genética , PPAR-beta/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
8.
Trends Mol Med ; 27(6): 554-571, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33839024

RESUMEN

Diabetic cardiomyopathy is the leading cause of death among people with diabetes. Despite its severity and poor prognosis, there are currently no approved specific drugs to prevent or even treat diabetic cardiomyopathy. There is a need to understand the pathogenic mechanisms underlying the development of diabetic cardiomyopathy to design new therapeutic strategies. These mechanisms are complex and intricate and include metabolic dysregulation, inflammation, oxidative stress, fibrosis, and apoptosis. Sirtuins, a group of deacetylase enzymes, play an important role in all these processes and are, therefore, potential molecular targets for treating this disease. In this review, we discuss the role of sirtuins in the heart, focusing on their contribution to the pathogenesis of diabetic cardiomyopathy and how their modulation could be therapeutically useful.


Asunto(s)
Diabetes Mellitus/fisiopatología , Cardiomiopatías Diabéticas/patología , Inflamación/fisiopatología , Estrés Oxidativo , Transducción de Señal , Sirtuinas/metabolismo , Animales , Cardiomiopatías Diabéticas/metabolismo , Humanos
9.
Clin Investig Arterioscler ; 33(2): 108-115, 2021.
Artículo en Inglés, Español | MEDLINE | ID: mdl-33303217

RESUMEN

Apolipoprotein C-III (apoC-III) is a small protein that is predominantly synthesized in the liver and mainly resides at the surface of triglyceride-rich lipoproteins. Its expression is upregulated by glucose and reduced by insulin, with enhanced apoC-III promoting hypertriglyceridemia and inflammation in vascular cells. The protein is also elevated in patients with diabetes, suggesting that enhanced apoC-III levels might contribute to the development of type 2 diabetes mellitus. The present review focuses on the key mechanisms by which apoC-III could promote type 2 diabetes mellitus, including exacerbation of insulin resistance in skeletal muscle, activation of ß-cell apoptosis, promotion of weight gain through its effects on white adipose tissue and hypothalamus, and attenuation of the beneficial effects of high-density lipoproteins on glucose metabolism. Therapeutic strategies aimed at reducing apoC-III levels may not only reduce hypertriglyceridemia but also might improve insulin resistance, thus delaying the development of type 2 diabetes mellitus.


Asunto(s)
Apolipoproteína C-III/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Resistencia a la Insulina/fisiología , Animales , Apolipoproteína C-III/genética , Diabetes Mellitus Tipo 2/prevención & control , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Hipertrigliceridemia/fisiopatología , Hipertrigliceridemia/prevención & control , Insulina/metabolismo , Lipoproteínas HDL/metabolismo
10.
Metabolism ; 114: 154342, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32810487

RESUMEN

Nonalcoholic fatty liver disease (NAFLD), a form of chronic liver disease that occurs in individuals with no significant alcohol abuse, has become an increasing concern for global health. NAFLD is defined as the presence of lipid deposits in hepatocytes and it ranges from hepatic steatosis (fatty liver) to steatohepatitis. Emerging data from both preclinical studies and clinical trials suggest that the peroxisome proliferator-activated receptor (PPAR)ß/δ plays an important role in the control of carbohydrate and lipid metabolism in liver, and its activation might hinder the progression of NAFLD. Here, we review the latest information on the effects of PPARß/δ on NAFLD, including its capacity to reduce lipogenesis, to alleviate inflammation and endoplasmic reticulum stress, to ameliorate insulin resistance, and to attenuate liver injury. Because of these effects, activation of hepatic PPARß/δ through synthetic or natural ligands provides a promising therapeutic option for the management of NAFLD.


Asunto(s)
Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Animales , Hepatocitos/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...