Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 59(15): 2106-2109, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36723213

RESUMEN

A manganese(II) metal-organic framework based on the hexatopic hexakis(4-carboxyphenyl)benzene, cpb6-: [Mn3(cpb)(dmf)3], was solvothermally prepared showing a Langmuir area of 438 m2 g-1, rapid uptake OF sulfur hexafluoride (SF6) as well as electrochemical and magnetic properties, while single crystal diffraction reveals an unusual rod-MOF topology.

2.
Phys Chem Chem Phys ; 24(39): 24469-24479, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36193581

RESUMEN

We report the behavior of the protic and surface active ionic liquid octylimidazolium bis(trifluoromethylsulfonyl)imide, [HC8Im][TFSI], in bulk and inside silica nanochannels, at the interface with the conductive substrate indium tin oxide (ITO) upon applied potential. The two distinct cases of the ionic liquid being in contact with a bare ITO substrate and an ITO substrate covered with a thin film of mesoporous silica containing vertically-aligned channel-like pores have been investigated. These correspond to the behavior of the bulk ionic liquid and the ionic liquid confined within nanochannels (approximately 3.5 nm wide and 65 nm long). Broadband dielectric spectroscopy (BDS) and electrochemical impedance spectroscopy (EIS) have been used as the experimental methods, while modelling with equivalent circuits has been applied to evaluate the experimental results. Thus, this study does not only show a functional ionic liquid/silica hybrid material, but also presents an in-depth electrochemical characterization revealing an enhanced specific capacitance at the confined-IL/ITO interface (∼16 µF cm-2) as compared to the case of bulk IL/ITO (∼6 µF cm-2). This suggests that local structure and ion ordering inside the nanochannels of silica are different from that of the bulk ionic liquid, favoring denser ionic packing and a higher specific capacitance at the metal interface.

3.
Chemistry ; 28(59): e202201667, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-35791810

RESUMEN

pKa values in non-aqueous solvents are of critical importance in many areas of chemistry. Our knowledge is, despite their relevance, still limited to the most fundamental properties and few pKa values in the most common solvents. Taking advantage of a recently introduced computationally efficient procedure we computed the pKa values of 182 compounds in 21 solvents. This data set is used to establish for the first time universal trends between all solvents. Our computations indicate, that the total charge of the molecule and the charge of the acidic group combined with the Kamlet-Taft solvatochromic parameters are sufficient to predict pKa values with at least semi- quantitative accuracy. We find, that neutral acids such as alcohols are strongly affected by the solvent properties. This is contrasted by cationic acids like ammonium ions whose pKa is often almost completely independent from the choice of solvent.


Asunto(s)
Compuestos de Amonio , Solventes/química , Iones
4.
ACS Omega ; 7(20): 17369-17383, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35647457

RESUMEN

Acid-base properties of molecules in nonaqueous solvents are of critical importance for almost all areas of chemistry. Despite this very high relevance, our knowledge is still mostly limited to the pK a of rather few compounds in the most common solvents, and a simple yet truly general computational procedure to predict pK a's of any compound in any solvent is still missing. In this contribution, we describe such a procedure. Our method requires only the experimental pK a of a reference compound in water and a few standard quantum-chemical calculations. This method is tested through computing the proton solvation energy in 39 solvents and by comparing the pK a of 142 simple compounds in 12 solvents. Our computations indicate that the method to compute the proton solvation energy is robust with respect to the detailed computational setup and the construction of the solvation model. The unscaled pK a's computed using an implicit solvation model on the other hand differ significantly from the experimental data. These differences are partly associated with the poor quality of the experimental data and the well-known shortcomings of implicit solvation models. General linear scaling relationships to correct this error are suggested for protic and aprotic media. Using these relationships, the deviations between experiment and computations drop to a level comparable to that observed in water, which highlights the efficiency of our method.

5.
ACS Appl Mater Interfaces ; 14(18): 20349-20357, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34590838

RESUMEN

Compared to traditional electric double-layer capacitors, redox-enhanced electrochemical capacitors (redox-ECs) show increased energy density and steadier power output thanks to the use of redox-active electrolytes. The aim of this study is to understand the electrochemical mechanisms of the aqueous pentyl viologen/bromide dual redox system at the interface of an ordered mesoporous carbon (CMK-8) and improve the device performance. Cells with CMK-8 carbon electrodes were investigated in several configurations using different charging rates and potential windows. The pentyl viologen electrochemistry shows a mixed behavior between solution-based diffusion and adsorption phenomena, with the reversible formation of an adsorbed layer. The extension of the voltage window allows for full reduction of the viologen molecules during charge and a consequent increase in the specific discharge energy delivered by the cell. Investigation of the mechanism indicates that a 1.5 V charging voltage with a 0.5 A g-1 charging rate and fast discharge rate produces the best overall performance.

6.
Phys Chem Chem Phys ; 23(20): 11727-11737, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33982050

RESUMEN

We describe a simple and efficient procedure to compute a conversion factor for the absolute potential of the standard hydrogen electrode in water to any other solvent. In contrast to earlier methods our procedure only requires the pKa of an arbitrary acid in water and few simple quantum chemical calculations as input. Thus, it is not affected adversely by experimental shortcomings related to measurements in non-aqueous solvents. By combining this conversion factor with the absolute potential in water, the absolute potential in the solvent of interest is obtained. Based on this procedure a new generalized computational standard hydrogen electrode for the computation of electron transfer and proton-coupled electron transfer potentials in non-aqueous solvents and ionic liquids is developed. This enables for the first time the reliable prediction of redox potentials in any solvent. The method is tested through calculation of absolute potentials in 36 solvents. Using the Kamlet-Taft linear solvation energy model we find that the relative absolute potentials consistently increase with decreasing polarisability and decreasing hydrogen bonding ability. For protic solvents good agreement with literature is observed while significant deviations are found for aprotic solvents. The obtained conversion factors are independent of the quantum chemical method, while minor differences are observed between solvation models. This does, however, not affect the global trends.

7.
Phys Chem Chem Phys ; 22(44): 25833-25840, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33150898

RESUMEN

A protocol for the accurate computation of electron transfer (ET) potentials from ab initio and density functional theory (DFT) calculations is described. The method relies on experimental pKa values, which can be measured accurately, to compute a computational setup dependent effective absolute potential. The effective absolute potentials calculated using this protocol display strong variations between the different computational setups and deviate in several cases significantly from the "generally accepted" value of 4.28 V. The most accurate estimate, obtained from CCSD(T)/aug-ccpvqz, indicates an absolute potential of 4.14 V for the normal hydrogen electrode (nhe) in water. Using the effective absolute potential in combination with CCSD(T) and a moderately sized basis, we are able to predict ET potentials accurately for a test set of small organic molecules (σ = 0.13 V). Similarly we find the effective absolute potential method to perform equally good or better for all considered DFT functionals compared to using one of the literature values for the absolute potential. For, M06-2X, which comprises the most accurate DFT method, standard deviation of 0.18 V is obtained. This improved performance is a result of using the most appropriate effective absolute potential for a given method.

8.
J Phys Chem C Nanomater Interfaces ; 124(26): 14202-14212, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-33815647

RESUMEN

Ambient-pressure operando soft X-ray absorption spectroscopy (soft-XAS) was applied to study the reactivity of hydroxylated SnO2 nanoparticles toward reducing gases. H2 was first used as a test case, showing that the gas phase and surface states can be simultaneously probed: Soft-XAS at the O K-edge gains sensitivity toward the gas phase, while at the Sn M4,5-edges, tin surface states are explicitly probed. Results obtained by flowing hydrocarbons (CH4 and CH3CHCH2) unequivocally show that these gases react with surface hydroxyl groups to produce water without producing carbon oxides and release electrons that localize on Sn to eventually form SnO. The partially reduced SnO2 - x layer at the surface of SnO2 is readily reoxidized to SnO2 by treating the sample with O2 at mild temperatures (>200 °C), revealing the nature of "electron sponge" of tin oxide. The experiments, combined with DFT calculations, allowed devising of a mechanism for dissociative hydrocarbon adsorption on SnO2, involving direct reduction of Sn sites at the surface via cleavage of C-H bonds and the formation of methoxy- and/or methyl-tin species at the surface.

9.
Phys Chem Chem Phys ; 21(35): 19342-19348, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31453585

RESUMEN

Hypochlorous acid is an intermediate in important industrial processes such as the production of chlorate but is also used for water treatment and disinfection. In aqueous solutions hypochlorous acid may decompose into oxygen or chlorate. Using density functional theory (DFT) modelling we have for the first time established detailed mechanisms for the respective decomposition pathways. Our calculations indicate, that both oxygen and chlorate formation proceed through an identical set of intermediates. At neutral pH the reaction is initiated by a fast equilibrium between HOCl, OCl-, Cl2O and Cl3O2-. The subsequent abstraction of Cl- to form Cl2O2 is rate determining for chlorate formation while it is the decomposition of Cl2O2 in the case of oxygen formation. Under alkaline conditions, OCl- decomposition to chlorate proceeds through chlorite. This reaction path is significantly less active. The highest rate for chlorate or oxygen formation is found at pH 7.1. These results highlight the need to consider a complex mixture of different Cl species when addressing the chemistry of hypochlorous acid containing solutions.

10.
Faraday Discuss ; 188: 257-78, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27089504

RESUMEN

The oxygen reduction reaction is of major importance in energy conversion and storage. Controlling electrocatalytic activity and its selectivity remains a challenge of modern electrochemistry. Here, first principles calculations and analysis of experimental data unravel the mechanism of this reaction on Au-Pd nanoalloys in acid media. A mechanistic model is proposed from comparison of the electrocatalysis of oxygen and hydrogen peroxide reduction on different Au-Pd ensembles. A H2O production channel on contiguous Pd sites proceeding through intermediates different from H2O2 and OOH(σ) adsorbate is identified as the bifurcation point for the two reaction pathway alternatives to yield either H2O or H2O2. H2O2 is a leaving group, albeit reduction of H2O2 to H2O can occur by electrocatalytic HO-OH dissociation that is affected by the presence of adsorbed OOH(σ). Similarities and differences between electrochemical and direct synthesis from H2 + O2 reaction on Au-Pd nanoalloys are discussed.

11.
J Am Chem Soc ; 137(23): 7262-5, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26030185

RESUMEN

Effective catalytic water-splitting can be electrochemically triggered in an alkaline solution of sodium hypochlorite. Hypochlorite oxidation on polycrystalline platinum yields ClO· radicals, which initiate a radical-assisted water-splitting, yielding oxygen, hydrogen peroxide, and protons. The efficiency of the O2 production corresponds to about two electrons per molecule of the produced O2 and is controlled primarily by the hypochlorite concentration and pH.

12.
J Biomed Mater Res B Appl Biomater ; 102(4): 826-39, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24259480

RESUMEN

For dental implants, improved osseointegration is obtained by modifying the surface roughness as well as oxide morphology and composition. A combination of different effects contributes to enhanced performance, but with surface roughness as the dominant factor. To single out the effect of oxide conductivity on biological response, oxide films with similar thickness and surface roughness but different electronic properties were formed using galvanostatic anodization. Three different current densities were used, 2.4, 4.8, and 11.9 mA cm(-2) , which resulted in growth rates ranging from 0.2 to 2.5 V s(-1) . The electronic properties were evaluated using cyclic voltammetry and impedance spectroscopy, while the biological response was studied by cell activity and apatite formation. The number of charge carrier in the oxide film close to the oxide/solution interface decreased from 5.8 × 10(-19) to 3.2 × 10(-19) cm(-2) with increasing growth rate, that is, the conductivity decreased correspondingly. Cell response of the different surfaces was tested in vitro using human osteoblast-like cells (MG-63). The results clearly show decreased osteoblast proliferation and adhesion but higher mineralization activity for the oxide with lower conductivity at the oxide/solution interface. The apatite-forming ability was examined by immersion in simulated body fluid. At short times the apatite coverage was ∼26% for the anodized surfaces, significantly larger than for the reference with only 3% coverage. After 1 week of immersion the apatite coverage ranged from 73 to 56% and a slight differentiation between the anodized surfaces was obtained with less apatite formation on the surface with lower conductivity, in line with the cell culture results.


Asunto(s)
Conductividad Eléctrica , Electrodos , Titanio , Apatitas/metabolismo , Materiales Biocompatibles , Adhesión Celular , División Celular , Línea Celular , Espectroscopía Dieléctrica , Humanos , Técnicas In Vitro , Ensayo de Materiales , Osteoblastos/citología , Osteoblastos/metabolismo , Espectroscopía de Fotoelectrones , Soluciones , Propiedades de Superficie , Difracción de Rayos X
13.
J Colloid Interface Sci ; 407: 168-76, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23859811

RESUMEN

Size dependent surface charging and interfacial potential of titanium dioxide (TiO2) nanoparticles are investigated by experimental and theoretical methods. Commercially available TiO2 (P25) nanoparticles were used for surface charge determinations by potentiometric titrations. Anatase particles, 10 and 22 nm in diameter, were synthesized by controlled hydrolysis of TiCl4, and electrophoretic mobilities were determined at a fixed pH but at increasing salt concentrations. Corrected Debye-Hückel theory of surface complexation (CDH-SC) was modified to model the size dependent surface charging behavior of TiO2 nanoparticles. Experimentally determined surface charge densities of rutile and P25 nanoparticles in different electrolytes were accurately modeled by the CDH-SC theory. Stern layer capacitances calculated by the CDH-SC theory were in good agreement with the values found by the classical surface complexation approach, and the interaction of protons with OH groups is found to be less exothermic than for iron oxide surfaces. Moreover, the CDH-SC theory predicts that the surface charge density of TiO2 nanoparticles of diameter <10nm is considerably higher than for larger particles, and pH at the point of zero charge (pHPZC) shifts to higher pH values as the particle size decreases. The importance of including the particle size in calculating the zeta potentials from mobilities is demonstrated. Smoluchowski theory showed that 10nm particles had lower zeta potential than 22 nm particles, whereas a reverse trend was seen when zeta potentials were calculated by Ohshima's theory in which particle size is included. Electrokinetic charge densities calculated from zeta potentials were found to be only one third of the true surface charge densities.


Asunto(s)
Nanopartículas del Metal/química , Modelos Teóricos , Titanio/química , Coloides/química , Concentración de Iones de Hidrógeno , Potenciometría , Propiedades de Superficie
14.
Int J Dent ; 2013: 139615, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23737786

RESUMEN

Nanoparticle-covered electrodes have altered properties as compared to conventional electrodes with same chemical composition. The changes originate from the large surface area and enhanced conduction. To test the mineralization capacity of such materials, TiO2 nanoparticles were deposited on titanium and gold substrates. The electrochemical properties were investigated using cyclic voltammetry and impedance spectroscopy while the mineralization was tested by immersion in simulated body fluid. Two types of nucleation and growth behaviours were observed. For smooth nanoparticle surfaces, the initial nucleation is fast with the formation of few small nuclei of hydroxyapatite. With time, an amorphous 2D film develops with a Ca/P ratio close to 1.5. For the rougher surfaces, the nucleation is delayed but once it starts, thick layers are formed. Also the electronic properties of the oxides were shown to be important. Both density of states (DOS) in the bandgap of TiO2 and the active area were determined. The maximum in DOS was found to correlate with the donor density (N d ) and the active surface area. The results clearly show that a rough surface with high conductivity is beneficial for formation of thick apatite layers, while the nanoparticle covered electrodes show early nucleation but limited apatite formation.

15.
Clin Oral Implants Res ; 23(8): 943-53, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21722190

RESUMEN

AIM: To investigate bone-to-implant bonding for some novel surface modifications with a hierarchic structure and to correlate the in vivo results with surface roughness parameters. MATERIALS AND METHODS: Newly developed implants surfaces were tested in rabbits and compared with the commercially available OsseoSpeed™ (OS) implant. The blasted test samples were subjected to treatment in oxalic acid (AT-II), followed by subsequent etching in hydrofluoric acid (AT-I). Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the surface topography and chemical composition of the implants. Biomechanical testing after 6 weeks of healing was complemented with the quantification of fluorochromes and the results were subjected to a multivariate statistical analysis. RESULTS: The results show, both with biomechanical- and with histomorphometrical tests, that the AT-I implants with different surface roughness at the micro (blasting), submicro (shallow cavities) and nanolevels (precipitates) have a greater bone tissue integration compared with the AT-II- and OS implants. The 2D bone-to-implant contact (BIC) data were in accordance with the 3D removal torque (RTQ) results even if the former were deduced from implants located in spongeous-type bone and the latter in cortical bone. The increase in RTQ values for the test samples AT-I and AT-II compared with the reference complies with the slightly higher S(a) values for these surfaces. CONCLUSIONS: Using a combination of conventional methods with novel quantification of florochrome and multivariate analysis, the influence of surface roughness on different levels could be discriminated. The RTQ and BIC values show that the most hierarchical structure with submicro cavities and nanoscale precipitates possesses the most favourable osseointegration properties.


Asunto(s)
Implantación Dental Endoósea/métodos , Implantes Dentales , Fémur/cirugía , Animales , Fenómenos Biomecánicos , Diseño de Prótesis Dental , Ácido Fluorhídrico , Implantes Experimentales , Masculino , Microscopía Confocal , Microscopía Electrónica de Rastreo , Oseointegración , Ácido Oxálico , Espectroscopía de Fotoelectrones , Proyectos Piloto , Conejos , Estadísticas no Paramétricas , Propiedades de Superficie , Titanio , Torque
16.
J Am Chem Soc ; 133(48): 19432-41, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22023652

RESUMEN

A novel strategy to direct the oxygen reduction reaction to preferentially produce H(2)O(2) is formulated and evaluated. The approach combines the inertness of Au nanoparticles toward oxidation, with the improved O(2) sticking probability of isolated transition metal "guest" atoms embedded in the Au "host". DFT modeling was employed to screen for the best alloy candidates. Modeling indicates that isolated alloying atoms of Pd, Pt, or Rh placed within the Au surface should enhance the H(2)O(2) production relative to pure Au. Consequently, Au(1-x)Pd(x) nanoalloys with variable Pd content supported on Vulcan XC-72 were prepared to investigate the predicted selectivity toward H(2)O(2) production for Au alloyed with Pd. It is demonstrated that increasing the Pd concentration to 8% leads to an increase of the electrocatalytic H(2)O(2) production selectivity up to nearly 95%, when the nanoparticles are placed in an environment compatible with that of a proton exchange membrane. Further increase of Pd content leads to a drop in H(2)O(2) selectivity, to below 10% for x = 0.5. It is proposed that the enhancement in H(2)O(2) selectivity is caused by the presence of individual surface Pd atoms surrounded by gold, whereas surface ensembles of contiguous Pd atoms support H(2)O formation. The results are discussed in the context of exergonic electrocatalytic H(2)O(2) synthesis in Polymer Electrolyte Fuel Cells for the simultaneous cogeneration of chemicals and electricity, the latter a credit to production costs.


Asunto(s)
Aleaciones/química , Oro/química , Peróxido de Hidrógeno/química , Nanopartículas/química , Paladio/química , Catálisis , Técnicas Electroquímicas , Oxidación-Reducción
17.
Dalton Trans ; 40(15): 3946-54, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21399820

RESUMEN

Proton conduction in three pyrochlores, Sm(1.92)Ca(0.08)B(2)O(7-δ), B = Ti, Sn, Zr and one phase with a related C-type fluorite superstructure, B = Ce, has been investigated. The samples were prepared by solid state reaction. Infrared spectroscopy measurements and thermogravimetric analysis were carried out to study the extent of proton dissolution and determine its dependence on the B-site ion. Electrochemical impedance spectroscopy, performed on heating and cooling pre-hydrated samples, confirmed significant levels of proton conduction for Sm(1.92)Ca(0.08)Ti(2)O(7-δ) and Sm(1.92)Ca(0.08)Sn(2)O(7-δ) up to T∼ 500 °C. In comparison the B = Zr and Ce samples revealed lower levels of proton conductivity, confined to temperatures below ∼ 400 °C. Proton diffusion coefficients of 3.36 × 10(-8), 1.73 × 10(-9), 5.53 × 10(-10) and 2.78 × 10(-11) cm(2) s(-1) were determined at 300 °C for samples with B = Ti, Sn, Zr and Ce respectively. The proton mobility of Sm(1.92)Ca(0.08)Ti(2)O(7-δ) is therefore approximately one order of magnitude lower than that found in yttrium-doped perovskite phases such as BaZrO(3) and BaCeO(3).

18.
J Biomech ; 44(6): 1059-65, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21354573

RESUMEN

The osseointegration of titanium dental implants is a complex process and there is a need for systematization of the factors influencing anchoring of implant. A common way of analyzing the strength of the fixation in bone is by measuring the torque required to remove the implants after healing. In this paper, a global biomechanical model is introduced and derived for removal torque situations. In this model, a gap is allowed to form between the bone and the implant and the size of the gap at fracture is a function of the surface roughness and can be shown to be directly related to the mean slope of the surface. The interfacial shear strength increases almost linearly with the mean slope and was also found to increase with an increase in the 2D surface roughness parameter, R(a). Besides the surface roughness, the design of the implant, the bone anatomy and the bone quality were shown to influence the interfacial shear strength. The Global biomechanical model can be used as a tool for optimizing the implant design and the surface topography to obtain high anchoring strength.


Asunto(s)
Implantes Dentales , Diseño de Prótesis Dental/métodos , Modelos Biológicos , Fenómenos Biomecánicos , Humanos
19.
J Am Chem Soc ; 133(15): 5882-92, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21438526

RESUMEN

Ruthenium-based oxides with rutile structure were examined regarding their properties in electrocatalytic ethene oxidation in acid media. A possible promoting effect of chloride ions toward oxirane formation was explored. Online differential electrochemical mass spectrometry combined with electrochemical polarization techniques were used to monitor the potential dependence of organic products resulting from ethene oxidation as well as the reaction solution decomposition products. Quantum chemical modeling by means of density functional theory was employed to study key reaction steps. The ethene oxidation in acid media led to CO(2), whereas oxirane was formed in the presence of 0.3 M Cl(-). In the Cl(-) promoted oxidation on RuO(2), oxirane and a small amount of CO(2) were the only detected electro-oxidation products at potentials below the onset of Cl(2) and O(2) evolution, resulting from Cl(-) and water oxidation. It is demonstrated here that the epoxidation is a surface-related electrocatalytic process that depends on the surface properties. Cl acts as the epoxidation promoter that switches off the combustion pathway toward CO(2) and enables the epoxidation reaction channel by surface reactive sites blocking. The proposed epoxidation mechanism implies binuclear (recombination) mechanism for O(2) evolution reaction on considered surfaces.

20.
Biomaterials ; 30(27): 4471-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19524291

RESUMEN

The properties of the TiO2 layer on titanium implant surfaces are decisive for good contact with the surrounding tissue. The oxide properties can be deliberately changed by for example chemical etching, ion incorporation or anodisation. In the present study impedance spectroscopy was used to study the semi-conducting properties of the naturally formed oxide for different pre-treatment of the surface. A turned surface was used as a reference and both physical (blasting) and chemical (hydrofluoric acid etching) treatments were investigated. Blasting of a titanium sample introduces defects in the metal surface and the study clearly shows that also the oxide layer contains defects leading to a higher number of charge carriers (increased conductivity) compared with the oxide on the turned surface. The hydrofluoric acid etching of the blasted surface results in an oxide film with even higher conductivity. Indication of the defect oxide structure for fluoride treated samples was also seen when analysing the TiO+/Ti+ ratio from ToF-SIMS data. The lowest value of this ratio was obtained for the HF etched sample, indicating a less stoichiometric oxide compared to the other surfaces. This is a result of incorporation of fluoride ions in the oxide, as proven by adsorption studies on a TiO2 suspension. The results were treated in the context of surface complexation and two surface complexes were identified. Our results are discussed in relation to pull-out data on rabbit. The pull-out forces depend primarily on surface roughness but the contribution from the hydrofluoric acid etching might be explained by fluoride ion incorporation and the resulting increase in oxide conductivity.


Asunto(s)
Ensayo de Materiales , Prótesis e Implantes , Semiconductores , Titanio/química , Adsorción , Animales , Implantes Dentales , Fluoruros/química , Concentración de Iones de Hidrógeno , Hidroxilación , Iones , Espectrometría de Masas , Microscopía Electrónica de Rastreo , Potenciometría , Conejos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA