Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Gastroenterol Hepatol ; 22(1): 81-90.e4, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37406954

RESUMEN

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD)-related fibrosis is heritable, but it is unclear how family history may be used to identify first-degree relatives with advanced fibrosis. We aimed to develop and validate a simple risk score to identify first-degree relatives of probands who have undergone assessment of liver fibrosis who are at higher risk of NAFLD with advanced fibrosis. METHODS: This prospective, cross-sectional, familial study consisted of a derivation cohort from San Diego, California, and a validation cohort from Helsinki, Finland. This study included consecutive adult probands (n = 242) with NAFLD and advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD, with at least 1 of their first-degree relatives. All included probands and first-degree relatives underwent evaluation of liver fibrosis, the majority by magnetic resonance elastography. RESULTS: A total of 396 first-degree relatives (64% male) were included. The median age and body mass index were 47 years (interquartile range, 32-62 y) and 27.6 kg/m2 (interquartile range, 24.1-32.5 kg/m2), respectively. Age (1 point), type 2 diabetes (1 point), obesity (2 points), and proband with NAFLD and advanced fibrosis (2 points) were predictors of advanced fibrosis among first-degree relatives in the derivation cohort (n = 220) and formed the NAFLD Familial Risk Score. The area under the receiver operator characteristic curve of the NAFLD Familial Risk Score for detecting advanced fibrosis was 0.94 in the validation cohort (n = 176). The NAFLD Familial Risk Score outperformed the Fibrosis-4 index in the validation cohort (area under the receiver operator characteristic curve, 0.94 vs 0.70; P = .02). CONCLUSIONS: The NAFLD Familial Risk Score is a simple and accurate clinical tool to identify advanced fibrosis in first-degree relatives. These data may have implications for surveillance in NAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Adulto , Humanos , Masculino , Femenino , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/patología , Estudios Transversales , Estudios Prospectivos , Factores de Riesgo , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/patología , Predisposición Genética a la Enfermedad , Hígado/patología , Biopsia
2.
Cell Metab ; 35(11): 1887-1896.e5, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37909034

RESUMEN

The PNPLA3 I148M variant is the major genetic risk factor for all stages of fatty liver disease, but the underlying pathophysiology remains unclear. We studied the effect of this variant on hepatic metabolism in homozygous carriers and non-carriers under multiple physiological conditions with state-of-the-art stable isotope techniques. After an overnight fast, carriers had higher plasma ß-hydroxybutyrate concentrations and lower hepatic de novo lipogenesis (DNL) compared to non-carriers. After a mixed meal, fatty acids were channeled toward ketogenesis in carriers, which was associated with an increase in hepatic mitochondrial redox state. During a ketogenic diet, carriers manifested increased rates of intrahepatic lipolysis, increased plasma ß-hydroxybutyrate concentrations, and decreased rates of hepatic mitochondrial citrate synthase flux. These studies demonstrate that homozygous PNPLA3 I148M carriers have hepatic mitochondrial dysfunction leading to reduced DNL and channeling of carbons to ketogenesis. These findings have implications for understanding why the PNPLA3 variant predisposes to progressive liver disease.


Asunto(s)
Lipogénesis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Lipogénesis/genética , Ácido 3-Hidroxibutírico/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Mitocondrias/metabolismo , Predisposición Genética a la Enfermedad
3.
Atherosclerosis ; 363: 22-29, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36455305

RESUMEN

BACKGROUND AND AIMS: The susceptibility of low-density lipoprotein (LDL) to aggregation predicts atherosclerotic cardiovascular disease. However, causes of interindividual variation in LDL lipid composition and aggregation susceptibility remain unclear. We examined whether the lipid composition and aggregation susceptibility of LDL reflect the lipid composition of the human liver. METHODS: Liver biopsies and blood samples for isolation of LDL particles were obtained from 40 obese subjects (BMI 45.9 ± 6.1 kg/m2, age 43 ± 8 years). LDL was isolated using sequential ultracentrifugation and lipidomic analyses of liver and LDL samples were determined using ultra-high performance liquid chromatography-mass spectrometry. LDL aggregation susceptibility ex vivo was analyzed by inducing aggregation by human recombinant secretory sphingomyelinase and following aggregate formation. RESULTS: The composition (acyl carbon number and double bond count) of hepatic triglycerides, phosphatidylcholines, and sphingomyelins (SMs) was closely associated with that of LDL particles. Hepatic dihydroceramides and ceramides were positively correlated with concentrations of the corresponding SM species in LDL as well with LDL aggregation. These relationships remained statistically significant after adjustment for age, sex, and body mass index. CONCLUSIONS: Lipid composition of LDL reflects that of the human liver in obese patients. Changes in hepatic sphingolipid metabolism may contribute to interindividual variation of LDL lipid composition and susceptibility to aggregation.


Asunto(s)
Lipidómica , Lipoproteínas LDL , Humanos , Adulto , Persona de Mediana Edad , Lipoproteínas LDL/metabolismo , Triglicéridos , Esfingomielinas , Hígado/metabolismo
4.
J Clin Invest ; 132(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36317632

RESUMEN

BACKGROUNDA pilot, single-center study showed that first-degree relatives of probands with nonalcoholic fatty liver disease (NAFLD) cirrhosis have a high risk of advanced fibrosis. We aimed to validate these findings using 2 independent cohorts from the US and Europe.METHODSThis prospective study included probands with NAFLD with advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD, with at least 1 first-degree relative. A total of 396 first-degree relatives - 220 in a derivation cohort and 176 in a validation cohort - were enrolled in the study, and liver fibrosis was evaluated using magnetic resonance elastography and other noninvasive imaging modalities. The primary outcome was prevalence of advanced fibrosis in first-degree relatives.RESULTSPrevalence of advanced fibrosis in first-degree relatives of probands with NAFLD with advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD was 15.6%, 5.9%, and 1.3%, respectively (P = 0.002), in the derivation cohort, and 14.0%, 2.6%, and 1.3%, respectively (P = 0.004), in the validation cohort. In multivariable-adjusted logistic regression models, age of ≥50 years (adjusted OR [aOR]: 2.63, 95% CI 1.0-6.7), male sex (aOR: 3.79, 95% CI 1.6-9.2), diabetes mellitus (aOR: 3.37, 95% CI 1.3-9), and a first-degree relative with NAFLD with advanced fibrosis (aOR: 11.8, 95% CI 2.5-57) were significant predictors of presence of advanced fibrosis (all P < 0.05).CONCLUSIONFirst-degree relatives of probands with NAFLD with advanced fibrosis have significantly increased risk of advanced fibrosis. Routine screening should be done in the first-degree relatives of patients with advanced fibrosis.FUNDINGSupported by NCATS (5UL1TR001442), NIDDK (U01DK061734, U01DK130190, R01DK106419, R01DK121378, R01DK124318, P30DK120515, K23DK119460), NHLBI (P01HL147835), and NIAAA (U01AA029019); Academy of Finland grant 309263; the Novo Nordisk, EVO, and Sigrid Jusélius Foundations; and the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement 777377. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program and the EFPIA.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/genética , Estudios Prospectivos , Diagnóstico por Imagen de Elasticidad/efectos adversos , Diagnóstico por Imagen de Elasticidad/métodos , Cirrosis Hepática/genética , Fibrosis
5.
J Hepatol ; 76(3): 526-535, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34710482

RESUMEN

BACKGROUND & AIMS: There is substantial inter-individual variability in the risk of non-alcoholic fatty liver disease (NAFLD). Part of which is explained by insulin resistance (IR) ('MetComp') and part by common modifiers of genetic risk ('GenComp'). We examined how IR on the one hand and genetic risk on the other contribute to the pathogenesis of NAFLD. METHODS: We studied 846 individuals: 492 were obese patients with liver histology and 354 were individuals who underwent intrahepatic triglyceride measurement by proton magnetic resonance spectroscopy. A genetic risk score was calculated using the number of risk alleles in PNPLA3, TM6SF2, MBOAT7, HSD17B13 and MARC1. Substrate concentrations were assessed by serum NMR metabolomics. In subsets of participants, non-esterified fatty acids (NEFAs) and their flux were assessed by D5-glycerol and hyperinsulinemic-euglycemic clamp (n = 41), and hepatic de novo lipogenesis (DNL) was measured by D2O (n = 61). RESULTS: We found that substrate surplus (increased concentrations of 28 serum metabolites including glucose, glycolytic intermediates, and amino acids; increased NEFAs and their flux; increased DNL) characterized the 'MetComp'. In contrast, the 'GenComp' was not accompanied by any substrate excess but was characterized by an increased hepatic mitochondrial redox state, as determined by serum ß-hydroxybutyrate/acetoacetate ratio, and inhibition of hepatic pathways dependent on tricarboxylic acid cycle activity, such as DNL. Serum ß-hydroxybutyrate/acetoacetate ratio correlated strongly with all histological features of NAFLD. IR and hepatic mitochondrial redox state conferred additive increases in histological features of NAFLD. CONCLUSIONS: These data show that the mechanisms underlying 'Metabolic' and 'Genetic' components of NAFLD are fundamentally different. These findings may have implications with respect to the diagnosis and treatment of NAFLD. LAY SUMMARY: The pathogenesis of non-alcoholic fatty liver disease can be explained in part by a metabolic component, including obesity, and in part by a genetic component. Herein, we demonstrate that the mechanisms underlying these components are fundamentally different: the metabolic component is characterized by hepatic oversupply of substrates, such as sugars, lipids and amino acids. In contrast, the genetic component is characterized by impaired hepatic mitochondrial function, making the liver less able to metabolize these substrates.


Asunto(s)
Enfermedades Metabólicas/genética , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Adulto , Biopsia/métodos , Biopsia/estadística & datos numéricos , Femenino , Finlandia/epidemiología , Humanos , Hígado/patología , Hígado/fisiopatología , Masculino , Enfermedades Metabólicas/complicaciones , Enfermedades Metabólicas/epidemiología , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/metabolismo , Factores de Riesgo
6.
J Clin Endocrinol Metab ; 107(5): e2008-e2020, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-34971370

RESUMEN

CONTEXT: Guidelines recommend blood-based fibrosis biomarkers to identify advanced nonalcoholic fatty liver disease (NAFLD), which is particularly prevalent in patients with obesity. OBJECTIVE: To study whether the degree of obesity affects the performance of liver fibrosis biomarkers in NAFLD. DESIGN: Cross-sectional cohort study comparing simple fibrosis scores [Fibrosis-4 Index (FIB-4); NAFLD Fibrosis Score (NFS); aspartate aminotransferase to platelet ratio index; BARD (body mass index, aspartate-to-alanine aminotransferase ratio, diabetes); Hepamet Fibrosis Score (HFS)] and newer scores incorporating neo-epitope biomarkers PRO-C3 (ADAPT, FIBC3) or cytokeratin 18 (MACK-3). SETTING: Tertiary referral center. PATIENTS: We recruited overweight/obese patients from endocrinology (n = 307) and hepatology (n = 71) clinics undergoing a liver biopsy [median body mass index (BMI) 40.3 (interquartile range 36.0-44.7) kg/m2]. Additionally, we studied 859 less obese patients with biopsy-proven NAFLD to derive BMI-adjusted cutoffs for NFS. MAIN OUTCOME MEASURES: Biomarker area under the receiver operating characteristic (AUROC), sensitivity, specificity, and predictive values to identify histological stage ≥F3 fibrosis or nonalcoholic steatohepatitis with ≥F2 fibrosis [fibrotic nonalcoholic steatohepatitis (NASH)]. RESULTS: The scores with an AUROC ≥0.85 to identify ≥F3 fibrosis were ADAPT, FIB-4, FIBC3, and HFS. For fibrotic NASH, the best predictors were MACK-3 and ADAPT. The specificities of NFS, BARD, and FIBC3 deteriorated as a function of BMI. We derived and validated new cutoffs for NFS to rule in/out ≥F3 fibrosis in groups with BMIs <30.0, 30.0 to 39.9, and ≥40.0 kg/m2. This optimized its performance at all levels of BMI. Sequentially combining FIB-4 with ADAPT or FIBC3 increased specificity to diagnose ≥F3 fibrosis. CONCLUSIONS: In obese patients, the best-performing fibrosis biomarkers are ADAPT and the inexpensive FIB-4, which are unaffected by BMI. The widely used NFS loses specificity in obese individuals, which may be corrected with BMI-adjusted cutoffs.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Aspartato Aminotransferasas , Biomarcadores , Biopsia , Estudios Transversales , Fibrosis , Humanos , Hígado/patología , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/etiología , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/complicaciones , Obesidad/patología
7.
Nutrients ; 13(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33429859

RESUMEN

Only some individuals with obesity develop liver fibrosis due to non-alcoholic fatty liver disease (NAFLD-fibrosis). We determined whether detailed assessment of lifestyle factors in addition to physical, biochemical and genetic factors helps in identification of these patients. A total of 100 patients with obesity (mean BMI 40.0 ± 0.6 kg/m2) referred for bariatric surgery at the Helsinki University Hospital underwent a liver biopsy to evaluate liver histology. Physical activity was determined by accelerometer recordings and by the Modifiable Activity Questionnaire, diet by the FINRISK Food Frequency Questionnaire, and other lifestyle factors, such as sleep patterns and smoking, by face-to-face interviews. Physical and biochemical parameters and genetic risk score (GRS based on variants in PNPLA3, TM6SF2, MBOAT7 and HSD17B13) were measured. Of all participants 49% had NAFLD-fibrosis. Independent predictors of NAFLD-fibrosis were low moderate-to-vigorous physical activity, high red meat intake, low carbohydrate intake, smoking, HbA1c, triglycerides and GRS. A model including these factors (areas under the receiver operating characteristics curve (AUROC) 0.90 (95% CI 0.84-0.96)) identified NAFLD-fibrosis significantly more accurately than a model including all but lifestyle factors (AUROC 0.82 (95% CI 0.73-0.91)) or models including lifestyle, physical and biochemical, or genetic factors alone. Assessment of lifestyle parameters in addition to physical, biochemical and genetic factors helps to identify obese patients with NAFLD-fibrosis.


Asunto(s)
Estilo de Vida , Cirrosis Hepática/etiología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Obesidad/complicaciones , Adulto , Cirugía Bariátrica , Dieta , Ejercicio Físico , Femenino , Predisposición Genética a la Enfermedad , Humanos , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Estudios Prospectivos , Sueño , Factores Socioeconómicos , Estrés Psicológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...