Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Forensic Leg Med ; 106: 102726, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39094352

RESUMEN

BACKGROUND: The assessment of the postmortem interval (PMI) represents one of the major challenges in forensic pathology. Because of their stability, microRNAs, or miRNAs, are anticipated to be helpful in forensic research. OBJECTIVE: To see if estimation of PMI is possible using miRNA-21 and Hypoxia-inducible factor-1α (HIF-1α) expression levels in the heart samples from aluminum phosphide toxicity (Alpt). METHODS: This was a cross sectional study on 60 post-mortem samples (heart tissues) collected at different intervals during forensic autopsies. The two groups were allocated equally according to the cause of death into Group I (non-toxicated deaths, n = 30): Deaths caused by other than toxicity, and Group II (toxicated deaths, n = 30): Deaths due to Alpt. MDA (Malondialdehyde) and GSH (Glutathione), were measured in heart tissues using ELIZA. MiRNA- 21and HIF-1α expression levels were measured in heart tissues at different PMI using RT-Q PCR. ROC curve for detection of toxicated deaths using miRNA-21 and HIF was carried out. RESULTS: miRNA-21 and HIF-1α expression levels in Alp deaths were up regulated while GSH was downregulated with statistically significant difference. There was positive correlation between miRNA-21, HIF-1α and MDA with PMI while there was negative correlation between GSH and PMI in Alp deaths. In prediction of post mortem interval in Alp deaths miRNA-21 sensitivity and specificity were (75.9 %, 51.7 %, respectively) while HIF-1α sensitivity and specificity were 100 %. CONCLUSION: PMI can be calculated using the degree to which particular miRNA-21 and HIF-1α are expressed in the heart tissue. The combination of miRNA-21 with HIF-1α in post mortem estimation is precious indicators.


Asunto(s)
Compuestos de Aluminio , Subunidad alfa del Factor 1 Inducible por Hipoxia , MicroARNs , Miocardio , Fosfinas , Cambios Post Mortem , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , MicroARNs/metabolismo , Miocardio/metabolismo , Estudios Transversales , Masculino , Adulto , Femenino , Fosfinas/envenenamiento , Glutatión/metabolismo , Persona de Mediana Edad , Adulto Joven , Patologia Forense , Reacción en Cadena en Tiempo Real de la Polimerasa , Adolescente , Curva ROC
2.
ACS Omega ; 8(40): 37584-37591, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37841165

RESUMEN

Background: Titanium dioxide nanoparticles (TiO2NPs) are widely utilized and consumed mainly as food additives. Oxidative stress is considered to be the basic effect of TiO2NPs through biological interactions. Hesperidin (HSP) is a bioflavonoid (flavanone glycoside) with lipid-lowering, inflammation, oxidative stress suppression, antihypertensive, cancer-fighting, and antiedema effects. Objective: This study was to investigate the possible protective influences of HSP of subchronic oral TiO2NP exposure on the brains of rats, including neurotransmitters, oxidative stress/antioxidant parameters, inflammatory markers, and histological changes in the brains of adult male albino rats. Methodology: The experiment was executed on 80 albino rats. The animals were randomly divided into 4 equal groups. The first group served as a control; the second group was treated with oral doses of HSP (100 mg/kg Bw daily); the third group received TiO2NPs (200 mg/kg Bw orally daily); and the fourth group was treated with TiO2NPs and an oral dose of HSP daily for 8 weeks. Blood samples were obtained for biochemical analysis. Neurotransmitters, oxidative stress biomarker levels, and inflammatory markers were measured in brain homogenates. Histological examination of the brain was performed through H&E staining. Results: Coadministration of hesperidin with TiO2NPs orally for 8 weeks decreased the levels of MDA, TNF-α, AChE, and dopamine in brain homogenates, which were increased in the TiO2NP group. It increased the other oxidative biomarkers (SOD, CAT, and GPx) and Nrf-2 expression levels. Brain histological sections of the TiO2NP-treated group show degeneration, necrosis, congestion, and inflammatory cell infiltration that decreased markedly in the coadministration of hesperidin with the TiO2NP group. Conclusion: Hesperidin cotreatment offers significant protection against TiO2NP-induced oxidative stress and biochemical and histological alteration in the brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...