Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Sci Total Environ ; 926: 171964, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38537810

RESUMEN

Short (SCCPs) and medium (MCCPs) chain chlorinated paraffins being the emerging organic pollutants have raised serious concerns due to their widespread use and related human health risks. However, their occurrence in aquatic bodies like rivers and associated damage to ecological integrity is yet unknown in some regions of the world. The current study is the first ever assessment of SCCPs and MCCPs in sediment and water of river Ravi, Pakistan. Spatial occurrence and associated ecological risks were investigated from sediments (n = 16) and composite water samples (n = 8) collected at eight locations along the stretch of river Ravi. The concentrations of SCCPs and MCCPs varied from below limit of detection (

Asunto(s)
Cloro , Hidrocarburos Clorados , Humanos , Animales , Hidrocarburos Clorados/análisis , Parafina/análisis , Ríos , Pakistán , Monitoreo del Ambiente , Medición de Riesgo , Carbono , China
2.
Environ Monit Assess ; 196(4): 375, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492152

RESUMEN

The fundamental consequences of global warming include an upsurge in the intensity and frequency of temperature extremes. This study provides an insight into historical trends and projected changes in extreme temperatures on annual and seasonal scales across "Balochistan, Pakistan". Historical trends are analyzed through the Mann Kendal test, and extreme temperatures (Tmax and Tmin) are evaluated using generalized extreme value (GEV) distribution for historical period (1991-2020) from the observational data and the two projected periods as near-future (2041-2070) and far-future (2071-2100) using a six-member bias-corrected ensemble of regional climate models (RCMs) projections from the coordinate regional downscaling experiment (CORDEX) based on the worst emission scenario (RCP8.5). The evaluation of historical temperature trends suggests that Tmax generally increase on yearly scale and give mixed signals on seasonal scale (winter, spring, summer, and autumn); however, Tmin trends gave mixed signals at both yearly and seasonal scale. Compared to the historical period, the return levels are generally expected to be higher for Tmax and Tmin during the both projection periods in the order as far-future > near-future > historical on yearly and seasonal basis; however, the changes in Tmin are more evident. Station-averaged anomalies of + 1.9 °C and + 3.6 °C were estimated in 100-year return levels for yearly Tmax for near-future and far-future, respectively, while the anomalies in Tmin were found to be + 3.5 °C and + 4.8 °C which suggest the intensified heatwaves but milder colder extreme in future. The findings provide guidance on improved quantification of changing frequencies and severity in temperature extremes and the associated impacts.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente , Temperatura , Pakistán , Calor
3.
Environ Res ; 249: 118435, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38350545

RESUMEN

Rapid urbanization and associated waste generation have become a mounting ecological concern for wildlife, especially avian communities. Research has primarily focused on investigating the impacts of human activities on marine birds with comparatively less focus on terrestrial species that live in far more anthropized environments and are at significant risk. Our study has explored the abundance and characteristics of anthropogenic litter in 70 nests of four generalist bird species: Bank Myna (Acridotheres ginginianus), Common Myna (Acridotheres tristis), Black Kite (Milvus migrans) and House Crow (Corvus splendens), within the city of Lahore (Pakistan) and its surroundings, by determining and following an urbanization gradient. The overall frequency of litter occurrence (FLO%) for all the sampled nests was 89%. Over 80% of the recorded litter items consisted of plastic materials, primarily dominated by sheet-like plastics. There was a strong association between fabric and Black Kite nests, and metal and House Crow nests. Litter incorporation increased across the gradient from rural to urban habitats. The highest FLO% was found in nests sampled from waste dumping sites and urban sites (95%-100%), where anthropogenic influence was more intense. The high level of litter incorporation is potentially indicative of a species' adaptive response to urbanization, associated with the decline in natural nesting material and availability of anthropogenic litter. These findings highlight the need for strengthening the existing global database for terrestrial litter and its effect on wildlife and devising policy actions for better waste management and conservation of natural ecosystem balance.


Asunto(s)
Comportamiento de Nidificación , Urbanización , Animales , Pakistán , Aves/fisiología , Efectos Antropogénicos , Monitoreo del Ambiente , Residuos/análisis
4.
Sci Total Environ ; 912: 169256, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38101629

RESUMEN

A pioneering study employed a holistic geostatistical approach to predict the spatial variability of a non sampled area in the Chenab River, Pakistan, using kriging interpolation for organochlorine pesticide (OCP)-polluted risk zones. The Present research intended to investigate the carcinogenic and non-carcinogenic human health risks, contamination levels, and spatial variation of OCPs in the Chenab River, Pakistan. The residual OCP content in sediment samples (n = 120) ranged from 0.056 to 32.14 ng/g. DDE and α-HCH were prevalent among all the samples analyzed, with mean concentrations of 15.84 ± 8.02 and 12.45 ± 6.72 ng/g, respectively. The order of magnitude of OCPs in sediment samples was DDTs > α-HCH > chlorothalonil > heptachlor > endosulfan > aldrin > dieldrin. The findings of the single (SPI) and Nemerow (Nel) pollution index of α-HCH, heptachlor, and aldrin depicted the Chenab River as a serious pollution risk zone. The outcomes of the Pearson correlation coefficient analysis represent the positive correlation among all OCPs, revealing the common origin. Distribution trends showed substantially higher (p < 0.05) contents of analyzed OCPs along the downstream zone. With regards to USEPA human health hazard assessment model, the estimated non-carcinogenic (ΣHI) and non-carcinogenic (ΣTCR) risk ranged from 1.1 × 10-5 to 1.0 × 10-1, 4.0 × 10-8 to 3.2 × 10-4 respectively. TCR >10-4 illustrated a substantial cancer health risk posed by α-HCH, heptachlor, aldrin, and dieldrin in the downstream zone. We recommend the urgent cessation of the ongoing discharge of OCPs into the Chenab River, which needs to be highlighted owing to the significant cancer risk to public health to ensure the good health and wellbeings.


Asunto(s)
Hexaclorociclohexano , Hidrocarburos Clorados , Neoplasias , Plaguicidas , Contaminantes Químicos del Agua , Humanos , Dieldrín/análisis , Aldrín/análisis , Monitoreo del Ambiente , Plaguicidas/análisis , Hidrocarburos Clorados/análisis , Heptacloro/análisis , Contaminantes Químicos del Agua/análisis , China
5.
PLoS One ; 18(9): e0289069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37708189

RESUMEN

Heavy metal contamination of water has become a global environmental burden, which has stirred up agitation worldwide. Fabrication of adsorbents utilizing either low cost, environment friendly materials or waste products can be helpful in remediating environmental pollution. The current study evolved around the synthesis of nanocomposites derived from such raw precursors like spent tea waste biochar, hydroxyapatite, and clays. In this context, two nanocomposites, namely manganese ferrite doped hydroxyapatite/kaolinite/biochar (TK-NC) and manganese ferrite doped hydroxyapatite/vermiculite/biochar (TV-NC), were synthesized followed by their employment for decontamination of heavy metals from aqueous media. TK-NC and TV-NC exhibited the crystallite sizes in the range of 2.55-5.94 nm as obtained by Debye Scherrer Equation and Williamsons-Hall equation The fabricated nanocomposites were characterized using FT-IR, SEM-EDX, and powder XRD. Batch adsorption studies were performed, and influence of different adsorption parameters (contact time, reaction temperature, solution pH, adsorbent dose, and initial adsorbate concentration) on metal adsorption was examined. Thermodynamic studies revealed that the adsorption of Cr(VI), Ni(II) and Cu(II) on TK-NC and TV-NC was endothermic (+ΔH°) and indicates disorderness (+ΔS°) at the solid-liquid interface owing to the strong affinity of metal ions with adsorbent. The heavy metal uptake selectivity followed the following decreasing order; Cr(VI) > Cu(II) > Ni(II) by both nanocomposites, with adsorption capacities falling in the range of 204.68-343.05 mg g-1. Several adsorption kinetic and isotherm models were applied to experimentally calculated data, which suggest favorable adsorption of Cr(VI), Ni(II) and Cu(II) by TK-NC and TV-NC from the system while obeying general-order kinetics and R-P adsorption model, conferring the transition in adsorption kinetics order and involvement of multiple adsorption process.


Asunto(s)
Metales Pesados , Agua , Descontaminación , Espectroscopía Infrarroja por Transformada de Fourier , Durapatita
7.
Environ Geochem Health ; 45(8): 6643-6673, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37347308

RESUMEN

The study area is a part of the Salt Range, where water quality is being deteriorated by natural and anthropogenic sources. This research integrates water quality assessment, arsenic enrichment, hydrogeochemical processes, groundwater recharge and carbon sources in aquifer. Total dissolved solid (TDS) contents in springs water, lake water and groundwater are in range of 681-847 mg/L, 2460-5051 mg/L and 513-7491 mg/L, respectively. The higher concentrations of magnesium and calcium in water bodies next to sodium are because of carbonates, sulfates, halite and silicates dissolution. The average concentrations of ions in groundwater are in order of HCO3- > SO42- > Cl- > Na+ > Mg2+ > Ca2+ > K+ > NO3-, virtually analogous to springs water, but different from lake water, categorized as poor quality and unfit for drinking purposes. Based on major ions hydrochemistry, NaCl and mixed Ca-Mg-Cl type hydrochemical facies are associated with concentration of arsenic (4.2-39.5 µg/L) in groundwater. Groundwater samples (70%) having arsenic concentration (11 ≤ As ≤ 39.5 µg/L) exceeded from World Health Organization (WHO) guideline (As ≤ 10 µg/L) in near neutral to slightly alkaline (6.7 ≤ pH ≤ 8.3), positive Eh(6 ≤ Eh ≤ 204 mV), signifying its oxic condition. Eh-pH diagrams for arsenic and iron indicate that 80% of groundwater for arsenic and iron were in compartments of HAsO42- and Fe(OH)3, unveil oxic environment. Arsenic is moderately positive correlated with TDS, sodium, chloride, bicarbonate, nitrate, sulfate and weak negative with δ13CDIC in surface and groundwater, forecasting multiple sources of arsenic to aquifer. Stable isotopes of waters show recharge of groundwater from local rain and lake water. The lower δ13CDIC values of groundwater are modified by influx of CO2 produced during biological oxidation of soil natural organic matter.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Arsénico/análisis , Monitoreo del Ambiente , Cloruro de Sodio , Pakistán , Agua Subterránea/química , Isótopos/análisis , Sodio/análisis , Hierro , Cloruro de Sodio Dietético , Cloruros , Contaminantes Químicos del Agua/análisis
8.
Environ Monit Assess ; 195(6): 638, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138178

RESUMEN

The present study aimed to find out the source, distribution, quantity, and incipient threats of the microplastics (MPs) released by food-packing plastic materials, plastic bags, bottles, and containers on human health, biodiversity, water bodies, and atmosphere. For this purpose, 152 articles about MPs (0.1 to 5000 µm) and nanoplastics (NP) 1 to 100 nm) were reviewed and interpreted their results in the present articles about microplastics. The highest plastic waste is generated by China (⁓ 59 Mt), the USA (⁓ 38 Mt), Brazil (⁓ 12 Mt), Germany (⁓ 15 Mt), and Pakistan (⁓ 6 Mt). The count of MPs (MPs/kg) in Chinese salt was 718, UK 136, Iran 48, and USA 32, while MPs in bivalves, i.e., in Chinese bivalves was 2.93, UK 2.9, Iran 2.2, and Italy 7.2 in MPs/kg, respectively. The MPs count in Chinese fish was 7.3, Italy's 23, the USA's 13, and UK's 1.25 in MPs/kg, respectively. The MP concentrations in the water bodies, i.e., USA, were 15.2, Italy 7, and UK 4.4 in mg/L, respectively. It was critically reviewed that MPs can enter the human body causing various disorders (neurotoxic, biotoxic, mutagenic, teratogenic, and carcinogenic disorders) because of the presence of various polymers. The present study concluded that MPs were released from processed and stored food containers, either through physical, biological, or chemical means, which harshly affect the surrounding environment and human health. The study recommended that alternatives to plastic containers are glass and bioplastic containers, papers, cotton bags, wooden boxes, and tree leaves need to use to avoid direct consumption of MPs from food.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Animales , Humanos , Plásticos/análisis , Microplásticos/análisis , Almacenamiento de Alimentos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agua
9.
Heliyon ; 9(4): e14976, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37095914

RESUMEN

The civil construction sector is a major contributor to the emissions of greenhouse gases (GHGs), and accounts for 40 to 50% of the total GHGs emissions produced all over the world. Concrete utility poles are considered as pillars of power distribution systems in many developing regions of the world. This study has analysed the environmental sustainability of low-tension (LT) and high-tension (HT) types of precast-concrete (PC) poles used for power distribution in Pakistan. Life cycle analysis (LCA) method is used for the assessment of environmental burdens associated with the production-manufacturing stages of these PC poles. The LCA scores are illustrated for five impact categories: climate change, acidification, eutrophication, fine-particulate matter formation and fossil resource scarcity. The significant impact scores have been depicted in climate change and abiotic resource depletion categories as; 4.60E+01 kg CO2 eq. and 1.24 E+01 kg oil eq (for LT PC pole) and 1.55E+02 kg CO2 eq and 3.00E+01 kg oil eq (for HT PC pole), respectively. The analytics further depict that the manufacturing of PC pole is a highly energy intensive process, with significant hauling of raw materials and finished product which causes significant emissions and impact towards climate change and fossil resources depletion. Overall, this research can offer several novel contributions to the field of sustainable development and civil engineering, including a comprehensive analysis of the environmental impacts of the manufacturing process, the development of sustainable practices and technologies and the identification of the links between sustainable development and economic growth.

10.
Sci Total Environ ; 882: 163504, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37080307

RESUMEN

Carcinogenic hazards to human health were investigated through oral and dermal exposure to organochlorine pesticides (OCPs) from water samples (n = 120) of River Chenab, Pakistan. The Pioneering study aimed to employ an integrated geographic information system (GIS) based geostatistical method for the determination of pollution load by GC-ECD from water of River Chenab. The residual levels of OCPs detected from water samples ranged from 0.54 to 122 ng L-1 with significant prevalence of DDE and α-HCH. Results of the Nemerrow pollution index (NeI), single pollution index (SPI), and comprehensive pollution index (CPI) reflected the downstream zone a stern pollution risk zone. The spatial distribution pattern through geostatistical approaches also revealed significantly higher (p < 0.05) OCP levels in the downstream zone. Risk quotient (RQCCC) of surface water quality with respect to heptachlor epitomized a high level of risk (RQCCC > 1). Non-carcinogenic human health risk (Σ HQ) assessment ranged from 8.39 × 10-9 to 1.7 × 10-3, which represented a marginal risk through oral and dermal exposure. However, carcinogenic risks by oral exposure route were ranged from 3.57 × 10-11 to 4.46 × 10-6. Estimated cancer risk (ΣCR) exhibited a considerable carcinogenic risk posed by heptachlor, α-HCH and dieldrin. It is suggested to employ an immediate mitigation strategy for the constant discharge of OCPs in the studied area.


Asunto(s)
Hidrocarburos Clorados , Plaguicidas , Contaminantes Químicos del Agua , Humanos , Pakistán , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Plaguicidas/análisis , Hidrocarburos Clorados/análisis , Medición de Riesgo , Heptacloro , Calidad del Agua , China
11.
Int J Phytoremediation ; 25(12): 1656-1668, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36855239

RESUMEN

Microbes have shown potential for the bioremediation of tannery waste polluted soil. During our previous study, it was observed that heavy metal resistant Burkholderia cepacia CS8 augmented growth and phytoremediation capability of an ornamental plant. Objective of the present research work was to evaluate the capability of B. cepacia CS8 assisted Calendula officinalis plants for the phytoremediation of tannery solid waste (TSW) polluted soil. The TSW treatment significantly reduced growth attributes and photosynthetic pigments in C. officinalis. However, supplementation of B. cepacia CS8 which exhibited substantial tolerance to the TSW amended soil, augmented growth traits, carotenoid, proline, and antioxidant enzymes level in C. officinalis under toxic and nontoxic regimes. Inoculation of B. cepacia CS8 augmented plant growth (shoot length 13%, root length 11%), physiological attributes (chlorophyll a 14%, chlorophyll b 17%), antioxidant enzyme activities (peroxidase 24%, superoxide dismutase 31% and catalase 19%), improved proline 36%, phenol 32%, flavonoids 14% and declined malondialdehyde (MDA) content 15% and hydrogen peroxide (H2O2) level 12% in C. officinalis at TSW10 stress compared with relevant un-inoculated plants of TSW10 treatment. Moreover, B. cepacia CS8 application enhanced labile metals in soil and subsequent metal uptake, such as Cr 19%, Cd 22%, Ni 35%, Fe 18%, Cu 21%, Pb 34%, and Zn 30%, respectively in C. officinalis plants subjected to TSW10 stress than that of analogous un-inoculated treatment. Higher plant stress tolerance and improved phytoremediation potential through microbial inoculation will assist in the retrieval of agricultural land in addition to the renewal of native vegetation.


During the current study, it was observed that combination of Calendula officinalis and metal tolerant Burkholderia cepacia CS8 not only improved plant growth but also helped phyto-extraction of pollutants present in the tannery solid waste polluted soil. According to our information, research work describing the phytoremediation potential of native metal tolerant microbes and ornamental plants has not been reported in Pakistan.


Asunto(s)
Burkholderia cepacia , Calendula , Metales Pesados , Contaminantes del Suelo , Antioxidantes , Clorofila A , Biodegradación Ambiental , Residuos Sólidos , Peróxido de Hidrógeno , Suelo , Contaminantes del Suelo/análisis
12.
Sci Total Environ ; 871: 162084, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758692

RESUMEN

The present study was conducted to evaluate Carcinogenic (TR) and non-carcinogenic (THQ) human health risk of organochlorine pesticides (OCPs) in three edible fish species (Labeo boga, Channa marulius and Wallago attu) of River Chenab, Pakistan using USEPA human health risk assessment model. Holistic GIS (Geographic information system) based Geo-Statistical approach has been employed for the first time in River Chenab, Pakistan to categorize contaminated risk zones of OCPs based on single pollution index. The ∑OCPs concentrations in fish species were ranged from 5.09 to 414 ng/g with the prevalence of dieldrin. Results of single pollution index of DDE, aldrin, dieldrin and ∑endosulfan revealed River Chenab as polluted and risk zone area. Distribution pattern assessed significantly higher (p < 0.05) concentrations of OCPs in downstream area suggesting substantial pollution of surrounded industrial region. The human health risk assessment depicted no harmful non-carcinogenic (THQ) risk except for ΣOCPs concentration of C. marulius. Significant carcinogenic (TR) health risk exhibited by all examined OCPs from maximum of the studied sites. Therefore, the high carcinogenic human health risk had highlighted an immediate removal of continuous disposal of OCPs in the River Chenab.


Asunto(s)
Cyprinidae , Hidrocarburos Clorados , Plaguicidas , Contaminantes Químicos del Agua , Animales , Humanos , Sistemas de Información Geográfica , Dieldrín , Pakistán , Contaminantes Químicos del Agua/análisis , Plaguicidas/análisis , Hidrocarburos Clorados/análisis , Carcinógenos , Medición de Riesgo , Monitoreo del Ambiente/métodos
13.
Environ Toxicol Chem ; 42(3): 727-739, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36636893

RESUMEN

The presence of microplastics in different environmental matrices has raised many concerns about potential effects of microplastics on humans and freshwater ecosystems. In Pakistan, rivers potentially receive microplastics from anthropogenic activities in their catchments. However, research studies regarding microplastics' presence, distribution, and risks are scarce in Pakistan. To bridge the gap, the present study was conducted to evaluate microplastic pollution in the Chenab River. Surface water samples were collected from selected sites on the Chenab River using a manta trawl in the low-flow season during postmonsoon (October) 2019 and 2020 and in the high-flow season during monsoon (July) 2020 and 2021. Samples were digested, followed by density separation and filtration. Identification and polymer characterization of microplastics were completed using stereomicroscopy and attenuated total reflection Fourier transform infrared spectroscopy, respectively. Microplastics were found in all samples with significant spatiotemporal variation in microplastic concentration, with an average of 45.98 ± 10.45 microplastics/m3 in the low-flow season and 34.66 ± 16.15 microplastics/m3 in the high-flow season. Among microplastic shapes, fibers were the most dominant shape, whereas polyethylene terephthalate (38.2%) and polypropylene (19%) were the most abundant polymers. Polymer risk index analysis and pollution load index demonstrated that most of the sites ranked as safe. The potential ecological risks from single polymers and combined polymers showed minor risks posed by microplastics. The present study is the first step to focus on microplastic pollution in the Chenab River; it will help river managers to mitigate the microplastic pollution without compromising the ecological integrity of the river. Environ Toxicol Chem 2023;42:727-739. © 2023 SETAC.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Microplásticos/análisis , Plásticos/análisis , Ríos/química , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Polímeros
14.
Sci Rep ; 13(1): 1777, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720927

RESUMEN

Deep eutectic solvents (DESs) have emerged as new promising solvents in the field of "green chemistry," which possess a broad range of potential applications. However, the ecotoxicological profile of these solvents is still poorly known. In this study, ammonium-based deep eutectic solutions with glycerol (2:2), ethylene glycol (1:2), and diethylene glycol (1:2) as hydrogen bond donors in 1:2 proportion were evaluated for their interaction with various biological systems, including gram-positive and negative bacteria, fungi, fish, and human fibroblast cell lines. The DES synthesis was confirmed by Fourier transform infrared spectroscopy analysis, which analyses the interactions between DES precursors for their synthesis. The antimicrobial activity of tetrabutylammonium bromide: ethylene glycol was the most potent, while tetrabutylammonium bromide: diethylene glycol had a higher LC50 against C. carpio fish. Tetrabutylammonium bromide: glycerol was supposed to be the most suitable DES in terms of cell viability percentage (118%) and 2,2-diphenyl-1-picrylhydrazyl scavenging activity (93%). Finally, tetrabutylammonium bromide in glycerol can be considered an eco-friendly solvent due to its lower toxicity in both in vivo and in vitro environments.


Asunto(s)
Disolventes Eutécticos Profundos , Glicerol , Animales , Humanos , Glicerol/toxicidad , Etanol , Glicoles de Etileno , Solventes
15.
Environ Sci Pollut Res Int ; 30(2): 4866-4880, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35976585

RESUMEN

The exposure variation of arsenic from different ground and surface water sources has remained unpredictable which may cause severe human health problems. The current study is, therefore, designed to analyze the spatial variability of arsenic contamination in shallow aquifer and assess the potential human health risks. For this purpose, a total of 55 groundwater, 10 drain water, 4 river water, and 6 sediment samples were collected along zero to 5 km stretch of the River Ravi, Lahore. All water samples were tested for As, pH, and total dissolved solids (TDS), whereas sediments were only tested for As. Health risk models were used to predict cancer and non-cancer risk in adults and children. Among water samples, highest median (minimum-maximum) concentrations (µg/L) of As were recorded 53.32 (1.98-1555) in groundwater, followed by 53.04 (1.58-351.5) in drain water, and 4.80 (2.13-8.67) in river water, respectively, whereas As concentration (mg/kg) in river sediments was 6.03 (5.56-13.92). Variation of As in groundwater was non-significant (P > 0.05) among every 1-km stretch from the Ravi River. However, maximum median concentrations (µg/L) of 60.18 and 60.08 were recorded between 2-3 and 0-1 km from River Ravi, respectively, reflecting possible mixing of river water with shallow aquifers. A very high cancer and non-cancer risk (HI > 1.0 × 10-4) through groundwater As exposure was predicted for both children and adults. The current study concluded that prevalence of As above WHO prescribed limits in shallow aquifer along the urban stretch of the River Ravi is posing serious health risk to the exposed population.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Niño , Humanos , Ríos , Arsénico/análisis , Pakistán , Contaminantes Químicos del Agua/análisis , Agua Subterránea/análisis , Medición de Riesgo , Agua/análisis , Monitoreo del Ambiente
16.
Heliyon ; 8(10): e11101, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36281410

RESUMEN

Exposure to hazardous wastes, especially petroleum wastes hydrocarbon (PWHCs), can damage human health and biological diversity. A huge amount of petroleum waste along with persistent organic pollutants is being generated during exploration and processing of crude oil. The dumping of petroleum waste hydrocarbons in an open pit contaminates the soil which can cause severe threats to human health and agro-geo-environmental ecosystem. The current study aimed to evaluate the mode of occurrence, composition, environmental, and health impacts of petroleum waste by using recent literature. The extracted results show that oil emulsion contains 48% oil, suspension 23%, settled emulsion 42%, and sludge emulsion 36%. The study discusses the possible biological techniques for rehabilitation of petroleum waste-contaminated areas. Several physical and chemical techniques are available for remediation of petroleum waste, but they are either costly or environmentally not feasible. Whereas, biological remediation namely, Bioremediation (Biostimulation and Bioaugmentation), Phytoremediation (Phytodegradation, Rhizoremediation, Phytovolatilization, and Rhizo-filtration) is a cheap and environmentally friendly way to remove petroleum waste hydrocarbons from contaminated soil and water. Some important enzymes (i.e., peroxidase, nitrilase, nitroreductase, phosphatase) and plant species i.e., Acacia and Chloris species are prominent methods to remediate the PWHCs. The knowledge assembled in this review is expected to create new doors for researchers to develop more efficient techniques to control the harmful impacts of PWHCs on the environment and health.

17.
Molecules ; 27(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807251

RESUMEN

We investigated how different doses of microwave irradiation (MR) affect seed germination in Sorghum, including the level of remediation against textile and surgical wastewater (WW) by modulating biochemical and morpho-physiological mechanisms under glutamic acid (GA) application. The experiment was conducted to determine the impact of foliar-applied GA on Sorghum under wastewater conditions. Plants were treated with or without microwave irradiation (30 s, 2.45 GHz), GA (5 and 10 mM), and wastewater (0, 25, 50, and 100). Growth and photosynthetic pigments were significantly decreased in plants only treated with various concentrations of WW. GA significantly improved the plant growth characteristics both in MR-treated and -untreated plants compared with respective controls. HMs stress increased electrolyte leakage (EL), hydrogen peroxide (H2O2), and malondialdehyde (MDA) content; however, the GA chelation significantly improved the antioxidant enzymes activities such as ascorbate oxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) both in MR-treated and -untreated plants under WW stress compared with respective controls. The results suggested that the MR-treated plants accumulate higher levels of HMs under GA addition in comparison to the WW-only-treated and MR-untreated plants. The maximum increase in Cd accumulation was observed in the range of 14-629% in the roots, 15-2964% in the stems, and 26-4020% in the leaves; the accumulation of Cu was 18-2757% in the roots, 15-4506% in the stems, and 23-4605% in the leaves; and the accumulation of Pb was 13-4122% in the roots, 21-3588% in the stems, and 21-4990% in the leaves under 10 mM GA and MR-treated plants. These findings confirmed that MR-treated sorghum plants had a higher capacity for HMs uptake under GA and could be used as a potential candidate for wastewater treatment.


Asunto(s)
Contaminantes del Suelo , Sorghum , Antioxidantes/análisis , Ácido Glutámico/análisis , Peróxido de Hidrógeno/análisis , Microondas , Hojas de la Planta/química , Contaminantes del Suelo/análisis , Superóxido Dismutasa , Aguas Residuales/análisis
18.
Environ Sci Pollut Res Int ; 29(32): 49429-49438, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35585452

RESUMEN

Carbon emissions have emerged as an alarming and complex issue causing a long-lasting debate over climate change in the construction, building, and industrial sectors. There is tremendous growth in the construction and building industry, especially in low-middle-income developing countries, that involves rising production and consumption of cement and energy. As such, a growing amount of carbon emissions is becoming a serious challenge for developing economies. This study has assessed the driving factors that influence the critical levels of carbon emissions by employing Kaya identity and logarithmic mean Divisia index (LMDI) decomposition models in the growing cement manufacturing sector of a low-medium developing county, Pakistan, from 2005 to 2020. The results portrayed a typical trend of carbon emissions which are summarized as follows: (a) From 2006 to 2010, a slight increase is shown; (b) a slight decrease in the trend during 2011-2013; (c) from 2014 to 2018, there is a rapid rebound in the trend; and (d) a slight decline in 2019-2020. While the resultant mean values regarding the growth of the cement sector (6.34%), labor productivity (12.03%), energy structure (0.06%), energy intensity (- 0.63%), and carbon intensity (- 0.87%) have deliberated that these are the driving factors for carbon emissions by the cement industry in a developing economy. This study will provide an insight to the policymakers of developing nations so that they can efficiently monitor their carbon emissions and design and implement effective mitigation strategies. Ultimately, they would be able to shift to carbon-neutral technologies and renewable-alternative energy sources to achieve sustainable economic growth and a cleaner environment.


Asunto(s)
Carbono , Países en Desarrollo , Carbono/análisis , Dióxido de Carbono/análisis , China , Desarrollo Económico , Industrias
19.
Environ Monit Assess ; 194(5): 340, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35389091

RESUMEN

Microplastics (MPs) pollution is an emerging global environmental concern. Considering the high fraction of time people spend indoors, the human population can be directly exposed to this contamination through indoor dust. This preliminary study evaluates MPs' abundance and human health risk assessment in the deposited indoor dust. A total of forty dust samples (n = 20) were collected from homes in two different cities (Pakistan) in steel mesh pouches using the vacuum cleaner. The identification and quantification of MPs were conducted with a stereo microscope, whereas the qualitative assessment was performed with Fourier transform infrared spectroscopy (FTIR). The US EPA parameters to calculate the human health risk assessment were used to determine MPs' risk per-day/month/year. Overall, microfibers were the dominant category, followed by microfilms, micro-fragments, and nurdles. The chemical categorization of MPs was revealed as polyester, polyethylene, copolymers of polypropylene, and polyurethane. In Lahore, an average abundance of 241.45 (items/m2) MPs were observed compared to Sahiwal, with 162.1 (items/m2). More than 90% of the identified MPs were microfibers, with higher detection frequency and abundance in Lahore than Sahiwal. The human health risk assessment revealed high exposure risk because of indoor MPs. Moreover, toddlers were more vulnerable as compared to adults at both low and high exposure risk scenarios. There is an imminent need to conduct in-depth risk assessment focusing on the respirable fraction of MPs.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Adulto , Países en Desarrollo , Polvo/análisis , Monitoreo del Ambiente , Humanos , Pakistán , Plásticos , Contaminantes Químicos del Agua/análisis
20.
Saudi J Biol Sci ; 29(2): 793-803, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35197746

RESUMEN

The continuous use of brackish groundwater for irrigation is detrimental for soil and crop attributes. A three-year research study was designed for the wheat crop to assess the effects of brackish groundwater on crop yield and soil health under a surface irrigation system. Three sites were selected in different cropping zones of Pakistan. The treatments comprised of irrigation with moderately brackish water having 0.8, 1.3 & 2.7 dSm-1 of salinity and canal water. The results indicated that EC, SAR, bicarbonates, Ca2+ and Mg2+ levels increased in the soil for consecutive years and this increase was more at site S3 followed by S2 and S1. As soil depth is concerned, the increase was more pronounced in upper layers of soil (0-15 cm) as compared to 15-30 cm depth. Growth and yield were also affected by the consecutive use of this water, the number of plants, plant height, the number of spikes per plant, and yield was reduced at all the three sites. However, the impact was less pronounced at the site S1 whereas S3 was the most affected one. Grain weight and dry matter weight were observed to be maximum at S1. Water productivity was also calculated for all the three sites. Maximum water productivity was observed at S1 followed by S2 & S3. It was concluded that the continuous use of brackish water would have an adverse effect on crop yield and subsequently, soil health is also affected by it significantly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA