Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(11): e18392, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864705

RESUMEN

Deciphering the lncRNA-associated competitive endogenous RNA (ceRNA) network is essential in decoding glioblastoma multiforme (GBM) pathogenesis by regulating miRNA availability and controlling mRNA stability. This study aimed to explore novel biomarkers for GBM by constructing a lncRNA-miRNA-mRNA network. A ceRNA network in GBM was constructed using lncRNA, mRNA and miRNA expression profiles from the TCGA and GEO datasets. Seed nodes were identified by protein-protein interaction (PPI) network analysis of deregulated-mRNAs (DEmRNAs) in the ceRNA network. A lncRNA-miRNA-seed network was constructed by mapping the seed nodes into the preliminary ceRNA network. The impact of the seed nodes on the overall survival (OS) of patients was assessed by the GSCA database. Functional enrichment analysis of the deregulated-lncRNAs (DElncRNA) in the ceRNA network and genes interacting with OS-related genes in the PPI network were performed. Finally, the positive correlation between seed nodes and their associated lncRNAs and the expression level of these molecules in GBM tissue compared with normal samples was validated using the GEPIA database. Our analyzes revealed that three novel regulatory axes AL161785.1/miR-139-5p/MS4A6A, LINC02611/miR-139-5p/MS4A6A and PCED1B-AS1/miR-433-3p/MS4A6A may play essential roles in GBM pathogenesis. MS4A6A is upregulated in GBM and closely associated with shorter survival time of patients. We also identified that MS4A6A expression positively correlates with genes related to tumour-associated macrophages, which induce macrophage infiltration and immune suppression. The functional enrichment analysis demonstrated that DElncRNAs are mainly involved in neuroactive ligand-receptor interaction, calcium/MAPK signalling pathway, ribosome, GABAergic/Serotonergic/Glutamatergic synapse and immune system process. In addition, genes related to MS4A6A contribute to immune and inflammatory-related biological processes. Our findings provide novel insights to understand the ceRNA regulation in GBM and identify novel prognostic biomarkers or therapeutic targets.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioblastoma , MicroARNs , ARN Largo no Codificante , ARN Mensajero , Humanos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/mortalidad , Glioblastoma/metabolismo , ARN Largo no Codificante/genética , Pronóstico , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Mapas de Interacción de Proteínas/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/metabolismo , Perfilación de la Expresión Génica , Biología Computacional/métodos , Bases de Datos Genéticas , ARN Endógeno Competitivo
2.
BMC Cancer ; 24(1): 612, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773447

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is a type of fast-growing brain glioma associated with a very poor prognosis. This study aims to identify key genes whose expression is associated with the overall survival (OS) in patients with GBM. METHODS: A systematic review was performed using PubMed, Scopus, Cochrane, and Web of Science up to Journey 2024. Two researchers independently extracted the data and assessed the study quality according to the New Castle Ottawa scale (NOS). The genes whose expression was found to be associated with survival were identified and considered in a subsequent bioinformatic study. The products of these genes were also analyzed considering protein-protein interaction (PPI) relationship analysis using STRING. Additionally, the most important genes associated with GBM patients' survival were also identified using the Cytoscape 3.9.0 software. For final validation, GEPIA and CGGA (mRNAseq_325 and mRNAseq_693) databases were used to conduct OS analyses. Gene set enrichment analysis was performed with GO Biological Process 2023. RESULTS: From an initial search of 4104 articles, 255 studies were included from 24 countries. Studies described 613 unique genes whose mRNAs were significantly associated with OS in GBM patients, of which 107 were described in 2 or more studies. Based on the NOS, 131 studies were of high quality, while 124 were considered as low-quality studies. According to the PPI network, 31 key target genes were identified. Pathway analysis revealed five hub genes (IL6, NOTCH1, TGFB1, EGFR, and KDR). However, in the validation study, only, the FN1 gene was significant in three cohorts. CONCLUSION: We successfully identified the most important 31 genes whose products may be considered as potential prognosis biomarkers as well as candidate target genes for innovative therapy of GBM tumors.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Biología Computacional , Glioblastoma , ARN Mensajero , Glioblastoma/genética , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Biología Computacional/métodos , Biomarcadores de Tumor/genética , Pronóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mapas de Interacción de Proteínas , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica
3.
PLoS One ; 19(5): e0304410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38809924

RESUMEN

The association between Alzheimer's disease and metabolic disorders as significant risk factors is widely acknowledged. However, the intricate molecular mechanism intertwining these conditions remains elusive. To address this knowledge gap, we conducted a thorough investigation using a bioinformatics method to illuminate the molecular connections and pathways that provide novel perspectives on these disorders' pathological and clinical features. Microarray datasets (GSE5281, GSE122063) from the Gene Expression Omnibus (GEO) database facilitated the way to identify genes with differential expression in Alzheimer's disease (141 genes). Leveraging CoreMine, CTD, and Gene Card databases, we extracted genes associated with metabolic conditions, including hypertension, non-alcoholic fatty liver disease, and diabetes. Subsequent analysis uncovered overlapping genes implicated in metabolic conditions and Alzheimer's disease, revealing shared molecular links. We utilized String and HIPPIE databases to visualize these shared genes' protein-protein interactions (PPI) and constructed a PPI network using Cytoscape and MCODE plugin. SPP1, CD44, IGF1, and FLT1 were identified as crucial molecules in the main cluster of Alzheimer's disease and metabolic syndrome. Enrichment analysis by the DAVID dataset was employed and highlighted the SPP1 as a novel target, with its receptor CD44 playing a significant role in the inflammatory cascade and disruption of insulin signaling, contributing to the neurodegenerative aspects of Alzheimer's disease. ECM-receptor interactions, focal adhesion, and the PI3K/Akt pathways may all mediate these effects. Additionally, we investigated potential medications by repurposing the molecular links using the DGIdb database, revealing Tacrolimus and Calcitonin as promising candidates, particularly since they possess binding sites on the SPP1 molecule. In conclusion, our study unveils crucial molecular bridges between metabolic syndrome and AD, providing insights into their pathophysiology for therapeutic interventions.


Asunto(s)
Enfermedad de Alzheimer , Reposicionamiento de Medicamentos , Síndrome Metabólico , Mapas de Interacción de Proteínas , Biología de Sistemas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Síndrome Metabólico/metabolismo , Síndrome Metabólico/genética , Biología de Sistemas/métodos , Redes Reguladoras de Genes , Biología Computacional/métodos , Transducción de Señal , Bases de Datos Genéticas , Perfilación de la Expresión Génica
4.
Mol Neurobiol ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368286

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by memory impairment and a progressive decline in cognitive function. Mitochondrial dysfunction has been identified as an important contributor to the development of AD, leading to oxidative stress and energy deficits within the brain. While current treatments for AD aim to alleviate symptoms, there is an urgent need to target the underlying mechanisms. The emerging field of mitotherapy, which involves the transplantation of healthy mitochondria into damaged cells, has gained substantial attention and has shown promising results. However, research in the context of AD remains limited, necessitating further investigations. In this review, we summarize the mitochondrial pathways that contribute to the progression of AD. Additionally, we discuss mitochondrial transfer among brain cells and mitotherapy, with a focus on different administration routes, various sources of mitochondria, and potential modifications to enhance transplantation efficacy. Finally, we review the limited available evidence regarding the immune system's response to mitochondrial transplantation in damaged brain regions.

5.
PLoS One ; 19(1): e0295698, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38166029

RESUMEN

Glioblastoma multiforme (GBM), a malignant neoplasm originating from glial cells, remains challenging to treat despite the current standard treatment approach that involves maximal safe surgical resection, radiotherapy, and adjuvant temozolomide chemotherapy. This underscores the critical need to identify new molecular targets for improved therapeutic interventions. The current study aimed to explore the somatic mutations and potential therapeutic targets in GBM using somatic mutational information from four distinct GBM datasets including CGGA, TCGA, CPTAC and MAYO-PDX. The analysis included the evaluation of whole exome sequencing (WES) of GBM datasets, tumor mutation burden assessment, survival analysis, drug sensitivity prediction, and examination of domain-specific amino acid changes. The results identified the top ten commonly altered genes in the aforementioned GBM datasets and patients with mutations in OBSCN and AHNAK2 alone or in combination had a more favorable overall survival (OS). Also, the study identified potential drug sensitivity patterns in GBM patients with mutations in OBSCN and AHNAK2, and evaluated the impact of amino acid changes in specific protein domains on the survival of GBM patients. These findings provide important insights into the genetic alterations and somatic interactions in GBM, which could have implications for the development of new therapeutic strategies for this aggressive malignancy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Medicina de Precisión , Temozolomida/uso terapéutico , Mutación , Aminoácidos/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
6.
Exp Neurol ; 359: 114161, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787888

RESUMEN

The precursor form of nerve growth factor (proNGF) is essential to maintain NGF survival signaling. ProNGF is also among endogenous ligands for p75 neurotrophin receptor (p75ntr). Mounting evidence implies that p75ntr signaling contributes to neural damage in ischemic stroke. The present study examines the therapeutic effect of the p75ntr modulator LM11A-31. Adult mice underwent transient distal middle cerebral artery occlusion (t-dMCAO) followed by LM11A-31 treatment (25 mg/kg, i.p., twice daily) either for 72 h post-injury (acute phase) or afterward till two weeks post-stroke (subacute phase). LM11A-31 reduced blood-brain barrier permeability, cerebral tissue injury, and sensorimotor function in the acute phase of stroke. Ischemic brain samples showed repressed proNGF/P75ntr signaling and Caspase 3 activation in LM11A-31 treated mice, where we observed less reactive microglia and IL-1ß production. LM11A-31 (20-80 nM) also mitigated neural injury induced by oxygen-glucose deprivation (OGD) in sandwich co-cultures of primary cortical neurons (PCN) and astrocytes. This concurred with JNK/PARP downregulation and reduced caspase-3 cleavage in the PCNs and was associated with repressed proNGF generation in astrocytes. Further in vitro experiments indicated human proNGF suppresses the pro-inflammatory phenotype in microglial cultures, as determined by a sharp decline in HMGB-1 production and moderate arginase-1 upregulation. Despite significant protection in acute stroke, LM11A-31 treatment did not improve cortical atrophy and sensorimotor function in the subacute phase. Our findings provide preclinical evidence supporting LM11A-31 as a promising therapy for acute stroke injury. Further investigations may elucidate if reduced astrocytic proNGF, an endogenous reservoir of pro-neurotrophins, may restrict the therapeutic window.


Asunto(s)
Receptor de Factor de Crecimiento Nervioso , Accidente Cerebrovascular , Ratones , Humanos , Animales , Receptor de Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Astrocitos/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico
7.
Neurosci Lett ; 794: 137009, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36493898

RESUMEN

Thyroid hormones (THs) have an essential role in normal brain development and function. Methamphetamine (MA) is a widely abused psychostimulant that induces irreversible damages to neuronal cells. In the current study, we used rat primary hippocampal neurons (PHNs) to investigate the neuroprotective effect of THs against MA neurotoxicity. PHNs were prepared from 18-day rat embryos and cell viability was assessed using MTT assay, following treatment with various concentrations of MA, T3, T4 or tetrac, an integrin αvß3 cell surface receptor antagonist. Our results showed that 7 mM MA induced an approximately 50 % reduction in the PHNs viability. Treatment with 800 nM T3 or 8 µM T4 protected PHNs against MA toxicity, an effect which was blocked in the presence of tetrac. These findings suggest that THs protect PHNs against MA-induced cell death by the activation of integrin αvß3 cell surface receptors. So, targeting integrin αvß3 receptors or using THs can be considered as promising therapeutic strategies to overcome MA neurotoxicity.


Asunto(s)
Metanfetamina , Fármacos Neuroprotectores , Ratas , Animales , Fármacos Neuroprotectores/farmacología , Triyodotironina , Metanfetamina/toxicidad , Integrina alfaVbeta3/metabolismo , Hormonas Tiroideas/metabolismo , Tiroxina/farmacología , Tiroxina/metabolismo
8.
CNS Neurosci Ther ; 29(1): 91-103, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36184817

RESUMEN

AIMS: The peptidyl-prolyl cis/trans isomerase, Pin1, has a protective role in age-related neurodegeneration by targeting different phosphorylation sites of tau and the key proteins required to produce Amyloid-ß, which are the well-known molecular signatures of Alzheimer's disease (AD) neuropathology. The direct interaction of miR-140-5p with Pin1 mRNA and its inhibitory role in protein translation has been identified. The main purpose of this study was to investigate the role of miRNA-140-5p inhibition in promoting Pin1 expression and the therapeutic potential of the AntimiR-140-5p in the Aß oligomer (AßO)-induced AD rat model. METHODS: Spatial learning and memory were assessed in the Morris water maze. RT-PCR, western blot, and histological assays were performed on hippocampal samples at various time points after treatments. miRNA-140-5p inhibition enhanced Pin1 and ADAM10 mRNA expressions but has little effect on Pin1 protein level. RESULTS: The miRNA-140-5p inhibitor markedly ameliorated spatial learning and memory deficits induced by AßO, and concomitantly suppressed the mRNA expression of inflammatory mediators TNFα and IL-1ß, and phosphorylation of tau at three key sites (thr231, ser396, and ser404) as well as increased phosphorylated Ser473-Akt. CONCLUSION: According to our results, Antimir-140-mediated improvement of AßO-induced neuronal injury and memory impairment in rats may provide an appropriate rationale for evaluating miR-140-5p inhibitors as a promising agent for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Animales , Ratas , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , MicroARNs/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Proteínas tau/metabolismo
9.
Exp Gerontol ; 164: 111812, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35476966

RESUMEN

Substantial evidence indicates that imbalance in the expression of miR-132-3p, miR-181b-5p, miR-125b-5p, miR-26a-5p, miR-124-3p, miR-146a-5p, miR-29a-3p, and miR-30a-5p in the AD brain are associated with amyloid-beta (Aß) aggregation, tau pathology, neuroinflammation, and synaptic dysfunction, the major pathological hallmarks of Alzheimer's disease)AD(. Several studies have reported that intranasal insulin administration ameliorates memory in AD patients and animal models. However, the underlying molecular mechanisms are not yet completely elucidated. Therefore, the aim of this study was to determine whether insulin is involved in regulating the expression of AD-related microRNAs. Pursuing this objective, we first investigated the therapeutic effect of intranasal insulin on Aß oligomer (AßO)-induced memory impairment in male rats using the Morris water maze task. Then, molecular and histological changes in response to AßO and/or insulin time course were assessed in the extracted hippocampi on days 1, 14, and 21 of the study using congo red staining, western blot and quantitative real-time PCR analyses. We observed memory impairment, Aß aggregation, tau hyper-phosphorylation, neuroinflammation, insulin signaling dys-regulation, and down-regulation of miR-26a, miR-124, miR-29a, miR-181b, miR-125b, miR-132, and miR-146a in the hippocampus of AßO-exposed rats 21 days after AßO injection. Intranasal insulin treatment ameliorated memory impairment and concomitantly increased miR-132, miR-181b, and miR-125b expression, attenuated tau phosphorylation levels, Aß aggregation, and neuroinflammation, and regulated the insulin signaling as well. In conclusion, our study suggest that the neuroprotective effects of insulin on memory observed in AD-like rats could be partially due to the restoration of miR-132, miR-181b, and miR-125b expression in the brain.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Fármacos Neuroprotectores , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Hipocampo/metabolismo , Humanos , Insulina/metabolismo , Masculino , Trastornos de la Memoria/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Ratas
10.
Neurotoxicology ; 90: 130-135, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35301009

RESUMEN

Methamphetamine (MA) induces neurocognitive effects via several mechanisms. In the present study, we investigated the alteration of thyroid hormone receptor's expression in the context of MA-induced memory impairment and explored the protective effects of exogenous thyroid hormones (THs). Male wistar rats, received increasing regimen of MA (1-10 mg/kg, intraperitoneal, twice a day for 10 days), were treated with T3 (40 µg/rat/day; intranasal, 2.5 µl/nostril) or T4 (20 µg/kg/day; intraperitoneal) for 7 days after MA cessation. All rats were subjected to novel object recognition memory test and then the mRNA levels of TH nuclear receptors (TRα1 and TRß1) and seladin-1, an anti-apoptotic factor, and the protein level of TH cell surface receptor (integrin αvß3) were measured in the hippocampus of rats. Our results showed that MA-induced memory impairment is concomitant with decreased level of TRα1 mRNA. T3 or T4 treatment significantly alleviated MA-induced memory impairment, but had no significant effect on the mRNA levels of TH nuclear receptors. However, T4 treatment significantly increased the protein level of cell surface receptor (αv subunit) in MA-treated rats. These findings suggest that MA neurocognitive effects can be associated with impaired TH signaling in the brain and introduce this pathway as a promising therapeutic approach against MA-induced memory impairment.


Asunto(s)
Metanfetamina , Animales , Masculino , Trastornos de la Memoria/inducido químicamente , Metanfetamina/toxicidad , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores de Hormona Tiroidea/genética , Hormonas Tiroideas
11.
Basic Clin Neurosci ; 12(2): 205-212, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925717

RESUMEN

INTRODUCTION: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several studies. However, there is no document reporting the comparison of these two mediums. So in this study, we evaluated the neurons and astroglial cells in primary midbrain neurons from rat embryos cultured in DMEM/F12 and neurobasal mediums. METHODS: Primary mesencephalon cells were prepared from the E14.5 rat embryo. Then they were seeded in two different mediums (Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 [DMEM/F12] and neurobasal). On day 3 and day 5, half of the medium was replaced with a fresh medium. On day 7, ß3-tubulin-, GFAP (Glial fibrillary acidic protein)- and Tyrosine Hydroxylase TH-positive cells were characterized as neurons, astrocytes, and dopaminergic neurons, respectively, using immunohistochemistry. Furthermore, the morphology of the cells in both mediums was observed under light microscopy on days 1, 3, and 5. RESULTS: The cells cultured in both mediums were similar under light microscopy regarding the cell number, but in a neurobasal medium, the cells have aggregated and formed clustering structures. Although GFAP-immunoreactive cells were lower in neurobasal compared to DMEM/F12, the number of ß3-tubulin- and TH-positive cells in both cultures was the same. CONCLUSION: This study's findings demonstrated that primary midbrain cells from the E14.5 rat embryo could grow in both DMEM/F12 and neurobasal mediums. Therefore, considering the high price of a neurobasal medium, it can be replaced with DMEM/F12 for culturing primary dopaminergic neurons.

12.
Life Sci ; 287: 120088, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34715145

RESUMEN

Over the last decades, our knowledge of the key pathogenic mechanisms of Alzheimer's disease (AD) has dramatically improved. Regarding the limitation of current therapeutic strategies for the treatment of multifactorial diseases, such as AD, to be translated into the clinic, there is a growing trend in research to identify risk factors associated with the onset and progression of AD. Here, we review the current literature with a focus on the relationship between gastrointestinal (GI)/liver diseases during the lifespan and the incidence of AD, and discuss the possible mechanisms underlying the link between the diseases. We also aim to review studies evaluating the possible link between the chronic use of the most common GI medications and the future risk of AD development.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Eje Cerebro-Intestino/fisiología , Encéfalo/metabolismo , Enfermedades Gastrointestinales/metabolismo , Tracto Gastrointestinal/metabolismo , Hepatopatías/metabolismo , Enfermedad de Alzheimer/epidemiología , Animales , Enfermedades Gastrointestinales/epidemiología , Humanos , Hepatopatías/epidemiología , Factores de Riesgo
13.
Pharmacol Res ; 172: 105805, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34371173

RESUMEN

Growing evidence indicates that overexpression of the microRNA-34 (miR-34) family in the brain may play a crucial role in Alzheimer's disease (AD) pathogenesis by targeting and downregulating genes associated with neuronal survival, synapse formation and plasticity, Aß clearance, mitochondrial function, antioxidant defense system, and energy metabolism. Additionally, elevated levels of the miR-34 family in the liver and pancreas promote the development of metabolic syndromes (MetS), such as diabetes and obesity. Importantly, MetS represent a well-documented risk factor for sporadic AD. This review focuses on the recent findings regarding the role of the miR-34 family in the pathogenesis of AD and MetS, and proposes miR-34 as a potential molecular link between both disorders. A comprehensive understanding of the functional roles of miR-34 family in the molecular and cellular pathogenesis of AD brains may lead to the discovery of a breakthrough treatment strategy for this disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedades Metabólicas/genética , MicroARNs , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , MicroARNs/biosíntesis
14.
Mol Neurobiol ; 58(10): 5327-5337, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34297315

RESUMEN

Schwann cells (SCs) are considered potentially attractive candidates for transplantation therapies in neurodegenerative diseases. However, problems arising from the isolation and expansion of the SCs restrict their clinical applications. Establishing an alternative Schwann-like cell type is a prerequisite. Epidermal neural crest stem cells (EPI-NCSCs) are well studied for their autologous accessibility, along with the ability to produce major neural crest derivatives and neurotrophic factors. In the current study, we explored insulin influence, a well-known growth factor, on directing EPI-NCSCs into the Schwann cell (SC) lineage. EPI-NCSCs were isolated from rat hair bulge explants. The viability of cells treated with a range of insulin concentrations (0.05-100 µg/ml) was defined by MTT assay at 24, 48, and 72 h. The gene expression profiles of neurotrophic factors (BDNF, FGF-2, and IL-6), key regulators involved in the development of SC (EGR-1, SOX-10, c-JUN, GFAP, OCT-6, EGR-2, and MBP), and oligodendrocyte (PDGFR-α and NG-2) were quantified 1 and 9 days post-treatment with 0.05 and 5 µg/ml insulin. Furthermore, the protein expression of nestin (stemness marker), SOX-10, PDGFR-α, and MBP was analyzed following the long-term insulin treatment. Insulin downregulated the early-stage SC differentiation marker (EGR-1) and increased neurotrophins (BDNF and IL-6) and pro-myelinating genes, including OCT-6, SOX-10, EGR-2, and MBP, as well as oligodendrocyte differentiation markers, upon exposure for 9 days. Insulin can promote EPI-NCSC differentiation toward SC lineage and possibly oligodendrocytes. Thus, employing insulin might enhance the EPI-NCSCs efficiency in cell transplantation strategies.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Epidermis/efectos de los fármacos , Insulina/farmacología , Cresta Neural/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células de Schwann/efectos de los fármacos , Animales , Diferenciación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Epidermis/fisiología , Hipoglucemiantes/farmacología , Masculino , Cresta Neural/citología , Cresta Neural/fisiología , Células-Madre Neurales/fisiología , Ratas , Ratas Wistar , Células de Schwann/fisiología
15.
Metab Brain Dis ; 36(7): 1445-1467, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34173922

RESUMEN

Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico/patología , Enfermedades Neuroinflamatorias/prevención & control , Neuronas/patología , Orgánulos/fisiología , Animales , Muerte Celular , Citosol/fisiología , Retículo Endoplásmico/fisiología , Aparato de Golgi/fisiología , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/etiología , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Enfermedades Neuroinflamatorias/etiología , Peroxisomas/fisiología , Ribosomas/fisiología
16.
J Addict Dis ; 39(3): 357-362, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33682628

RESUMEN

BACKGROUND: Investigations proposed that genetic polymorphisms within proteins in methadone pharmacokinetic and pharmacodynamics are critical factors in determination of methadone dose in methadone maintenance therapy (MMT). OBJECTIVE: This study aimed to assess the associations between two polymorphisms, CYP3A4 (rs2740574) and OPRM1 (rs1799971), with dose of methadone in Iranian patients undergoing MMT. METHODS: A total of 124 Iranian male subjects aged 18-65 years old who were confirmed to be addicted by the addiction diagnostic tests and underwent MMT were assessed. Patients were divided into three groups of low (less than 40 mg/day), moderate (more than 40 mg/day and less than 110 mg/day) and high (more than 110 mg/day) methadone dose consumption. DNAs of included patients were extracted from their blood samples and were assessed for CYP3A4 and OPRM1 polymorphisms. RESULTS: Results showed that there was no significant association between the studied polymorphisms and methadone dose in Iranian addicted patients underwent MMT (P > 0.05). CONCLUSIONS: CYP3A4 and OPRM1 single variations cannot explain variability in methadone dosage in MMT. Studying the interactions of more genetic factors in larger samples may elucidate factors influencing the required dose of methadone and better individualized therapy.


Asunto(s)
Citocromo P-450 CYP3A/genética , Metadona/administración & dosificación , Tratamiento de Sustitución de Opiáceos , Receptores Opioides mu/genética , Adulto , Genotipo , Humanos , Irán/epidemiología , Masculino , Metadona/uso terapéutico , Persona de Mediana Edad , Trastornos Relacionados con Opioides/tratamiento farmacológico , Polimorfismo Genético
17.
Behav Brain Res ; 408: 113260, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33775777

RESUMEN

Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, associated with several pathophysiological complaints. Impaired insulin signaling in the brain, is one of the important characteristic features of AD which is accompanied by cognitive deficits. According to the multifactorial and complicated pathology of AD, no modifying therapy has been approved yet. Imipramine is a kind of tricyclic antidepressant with reported anti-inflammatory and anti-oxidant effects in the brain. There are controversial studies about the effect of this drug on spatial memory. This study investigates the effect of imipramine on streptozotocin (STZ) induced memory impairment in rats. Pursuing this objective, rats were treated with imipramine 10 or 20 mg/kg i.p. once a day for 14 days. 24 h after the last injection, memory function was evaluated by the Morris water maze (MWM) test in 4 consecutive days. Then, hippocampi were removed and the activity of caspase-3, mitogen activated protein kinases (MAPKs) family and inhibitory phosphorylation of insulin receptor substrate-1 (IRS-1ser307) were analyzed using Western blotting. Results showed that imipramine prevents memory impairment in STZ induced rats and this improvement was accompanied with an increase in ERK activity, reduction of caspase-3 and JNK activity, as well as partial restoration of P38 and IRS-1 activity. In conclusion, our study demonstrated that at least some members of the MAPK family are involved in the neuroprotective effect of imipramine.


Asunto(s)
Inhibidores de Captación Adrenérgica/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Imipramina/farmacología , Insulina/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Ratas , Ratas Wistar , Estreptozocina/farmacología
18.
CNS Neurosci Ther ; 27(3): 308-319, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33497031

RESUMEN

AIMS: Experimental and clinical evidences demonstrate that common dysregulated pathways are involved in Parkinson's disease (PD) and type 2 diabetes. Recently, insulin treatment through intranasal (IN) approach has gained attention in PD, although the underlying mechanism of its potential therapeutic effects is still unclear. In this study, we investigated the effects of insulin treatment in a rat model of PD with emphasis on mitochondrial function indices in striatum. METHODS: Rats were treated with a daily low dose (4IU/day) of IN insulin, starting 72 h after 6-OHDA-induced lesion and continued for 14 days. Motor performance, dopaminergic cell survival, mitochondrial dehydrogenases activity, mitochondrial swelling, mitochondria permeability transition pore (mPTP), mitochondrial membrane potential (Δψm ), reactive oxygen species (ROS) formation, and glutathione (GSH) content in mitochondria, mitochondrial adenosine triphosphate (ATP), and the gene expression of PGC-1α, TFAM, Drp-1, GFAP, and Iba-1 were assessed. RESULTS: Intranasal insulin significantly reduces 6-OHDA-induced motor dysfunction and dopaminergic cell death. In parallel, it improves mitochondrial function indices and modulates mitochondria biogenesis and fission as well as activation of astrocytes and microglia. CONCLUSION: Considering the prominent role of mitochondrial dysfunction in PD pathology, IN insulin as a disease-modifying therapy for PD should be considered for extensive research.


Asunto(s)
Insulina/administración & dosificación , Mitocondrias/efectos de los fármacos , Trastornos Motores/tratamiento farmacológico , Oxidopamina/toxicidad , Trastornos Parkinsonianos/tratamiento farmacológico , Administración Intranasal , Animales , Humanos , Masculino , Mitocondrias/fisiología , Trastornos Motores/inducido químicamente , Trastornos Motores/fisiopatología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/fisiopatología , Ratas , Ratas Wistar , Rotación
19.
Mol Neurobiol ; 58(5): 2407-2422, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33421016

RESUMEN

Neuroinflammation, an inflammatory response within the nervous system, has been shown to be implicated in the progression of various neurodegenerative diseases. Recent in vivo studies showed that lipopolysaccharide (LPS) preconditioning provides neuroprotection by activating Toll-like receptor 4 (TLR4), one of the members for pattern recognition receptor (PRR) family that play critical role in host response to tissue injury, infection, and inflammation. Pre-exposure to low dose of LPS could confer a protective state against cellular apoptosis following subsequent stimulation with LPS at higher concentration, suggesting a role for TLR4 pre-activation in the signaling pathway of LPS-induced neuroprotection. However, the precise molecular mechanism associated with this protective effect is not well understood. In this article, we provide an overall review of the current state of our knowledge about LPS preconditioning in attenuating apoptosis mechanism and conferring neuroprotection via TLR4 signaling pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Neuroprotección/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Animales
20.
Biomed Pharmacother ; 133: 111031, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33249277

RESUMEN

Tramadol, a weak agonist of mu-opioid receptors, causes seizure via several mechanisms. Preconditioning has been purposed to reduce the epileptic seizures in animal models of epilepsy. The preconditioning effect of tramadol on seizure is not studied yet. This study was designed to evaluate the preconditioning effect of ultra-low dose of tramadol on the seizures induced by tramadol at high dose. Furthermore, regarding the critical role of glutamate signaling in the pathogenesis of epilepsy, the effect of preconditioning on some glutamate signaling elements was also examined. Male Wistar rats received tramadol (2 mg/kg, i.p) or normal saline (1 mL/kg, i.p) in preconditioning and control groups, respectively. After 4 days, the challenging tramadol dose (150 mg/kg) was injected to all rats. Epileptic behaviors were recorded during 50 min. The expression of Norbin (as a regulator of metabotropic glutamate receptor 5), Calponin3 (as a regulator of excitatory synaptic markers), NR1 (NMDA receptor subunit 1) and GluR1 (AMPA receptor subunit 1) was measured in hippocampus, prefrontal cortex (PFC) and amygdala. Preconditioning decreased the number and duration of tremors and tonic-clonic seizures. Norbin, Calponin3, NR1 and GluR1 expression were decreased in hippocampus, and preconditioning had no effect on them. In contrast, it increased Norbin expression in PFC and amygdala, and attenuated NR1 and GluR1 upregulation following tramadol at high dose. These findings indicated that preconditioning by ultra-low dose of tramadol protected the animals against seizures following high dose of tramadol mediated, at least in part, by Norbin up regulation, and NR1 and GluR1 down regulation.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Anticonvulsivantes/administración & dosificación , Encéfalo/efectos de los fármacos , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/prevención & control , Tramadol/administración & dosificación , Analgésicos Opioides/toxicidad , Animales , Anticonvulsivantes/toxicidad , Encéfalo/metabolismo , Encéfalo/fisiopatología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Ratas Wistar , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/fisiopatología , Índice de Severidad de la Enfermedad , Tramadol/toxicidad , Calponinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...