Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(13): 16580-16588, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38529895

RESUMEN

Nonfullerene acceptors (NFAs) have dramatically improved the power conversion efficiency (PCE) of organic photovoltaics (OPV) in recent years; however, their device stability currently remains a bottleneck for further technological progress. Photocatalytic decomposition of nonfullerene acceptor molecules at metal oxide electron transport layer (ETL) interfaces has in several recent reports been demonstrated as one of the main degradation mechanisms for these high-performing OPV devices. While some routes for mitigating such degradation effects have been proposed, e.g., through a second layer integrated on the ETL surface, no clear strategy that complies with device scale-up and application requirements has been presented to date. In this work, it is demonstrated that the development of sputtered titanium oxide layers as ETLs in nonfullerene acceptor based OPV can lead to significantly enhanced device lifetimes. This is achieved by tuning the concentration of defect states at the oxide surface, via the reactive sputtering process, to mitigate the photocatalytic decomposition of NFA molecules at the metal oxide interlayers. Reduced defect state formation at the oxide surface is confirmed through X-ray photoelectron spectroscopy (XPS) studies, while the reduced photocatalytic decomposition of nonfullerene acceptor molecules is confirmed via optical spectroscopy investigations. The PBDB-T:ITIC organic solar cells show power conversion efficiencies of around 10% and significantly enhanced photostability. This is achieved through a reactive sputtering process that is fully scalable and industry compatible.

2.
ACS Appl Mater Interfaces ; 15(47): 55065-55072, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37972316

RESUMEN

The implementation of sputter-deposited TiOx as an electron transport layer in nonfullerene acceptor-based organic photovoltaics has been shown to significantly increase the long-term stability of devices compared to conventional solution-processed ZnO due to a decreased photocatalytic activity of the sputtered TiOx. In this work, we utilize synchrotron-based photoemission and absorption spectroscopies to investigate the interface between the electron transport layer, TiOx prepared by magnetron sputtering, and the nonfullerene acceptor, ITIC, prepared in situ by spray deposition to study the electronic state interplay and defect states at this interface. This is used to unveil the mechanisms behind the decreased photocatalytic activity of the sputter-deposited TiOx and thus also the increased stability of the organic solar cell devices. The results have been compared to similar measurements on anatase TiOx since anatase TiOx is known to have a strong photocatalytic activity. We show that the deposition of ITIC on top of the sputter-deposited TiOx results in an oxidation of Ti3+ species in the TiOx and leads to the emergence of a new O 1s peak that can be attributed to the oxygen in ITIC. In addition, increasing the thickness of ITIC on TiOx leads to a shift in the O 1s and C 1s core levels toward higher binding energies, which is consistent with electron transfer at the interface. Resonant photoemission at the Ti L-edge shows that oxygen vacancies in sputtered TiOx lie mostly in the surface region, which contrasts the anatase TiOx where an equal distribution between surface and subsurface oxygen vacancies is observed. Furthermore, it is shown that the subsurface oxygen vacancies in sputtered TiOx are strongly reduced after ITIC deposition, which can reduce the photocatalytic activity of the oxide, while the oxygen vacancies in model anatase TiOx are not affected upon ITIC deposition. This difference can explain the inferior photocatalytic activity of the sputter-deposited TiOx and thus also the increased stability of devices with sputter-deposited TiOx used as an electron transport layer.

3.
ACS Appl Mater Interfaces ; 13(16): 19460-19466, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33871979

RESUMEN

Organic photovoltaics (OPVs) technology now offers power conversion efficiency (PCE) of over 18% and is one of the main emerging photovoltaic technologies. In such devices, titanium dioxide (TiOx) has been vastly used as an electron extraction layer, typically showing unwanted charge-extraction barriers and the need for light-soaking. In the present work, using advanced photoemission spectroscopies, we investigate the electronic interplay at the interface between low-temperature-sputtered TiOx and C70 acceptor fullerene molecules. We show that defect states in the band gap of TiOx are quenched by C70 while an interfacial state appears. This new interfacial state is expected to support the favorable energy band alignment observed, showing a perfect match of transport levels, and thus barrier-free extraction of charges, making low-temperature-sputtered TiOx a good candidate for the next generation of organic solar cells.

4.
Sci Rep ; 9(1): 4024, 2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858539

RESUMEN

Achieving long-term stability in organic solar cells is a remaining bottleneck for the commercialization of this otherwise highly appealing technology. In this work, we study the performance and stability differences in standard and inverted DBP/C70 based organic solar cells. Differences in the charge-transfer state properties of inverted and standard configuration DBP/C70 solar cells are revealed by sensitive external quantum efficiency measurements, leading to differences in the open-circuit voltages of the devices. The degradation of standard and inverted solar cell configurations at ISOS aging test conditions (ISOS-D-3 and ISOS-T-3) was investigated and compared. The results indicate that the performance drop in the small molecule bilayer solar cells is less related to changes at the D-A interface, suggesting also a pronounced morphological stability, and instead, in the case of inverted cells, dominated by degradation at the electron transport layer (ETL) bathocuproine (BCP). Photoluminescence measurements, electron-only-device characteristics, and stability measurements show improved exciton blocking, electron transport properties and a higher stability for BCP/Ag ETL stacks, giving rise to inverted devices with enhanced performance and device stability.

5.
Sci Rep ; 8(1): 12608, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135557

RESUMEN

Standard and inverted configuration small molecule OPV cells incorporating bathocuproine (BCP) as electron transport and exciton blocking layer is investigated, demonstrating that 2 mm2 standard and inverted cells display a maximum performance for BCP thicknesses of 10 nm and 1.5 nm, respectively. The reason for the different optimum BCP thicknesses for the two device configurations is the BCP-metal complex formed between the Ag electrode and the BCP layer in the standard configuration OPV devices. Interestingly, at optimum BCP thicknesses, the inverted OPV cells outperform the standard devices. Upon up-scaling of the device area of the cells from 2 mm2 to 10 and 100 mm2, device failure becomes prominent for the inverted OPV cells, due to aggregation of the evaporated BCP layer on the ITO surface. This demonstrates that although BCP can be adopted for efficient ETL in inverted configuration OPV devices on small scale, it is not suitable for device up-scaling due to severely decreasing device yields. In this work, a possible solution where an ultrathin layer of C70 is evaporated between the ITO and BCP layer is proposed. It is demonstrated that the proposed solution holds a strong potential to minimize the device failures of the BCP based inverted OPV cells to a significant extent, while maintaining good device performances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...