Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39041037

RESUMEN

Ocular hypertension (OHT) caused by mechanical stress and chronic glucocorticoid exposure reduces the hydraulic permeability of the conventional outflow pathway. It increases the risk for irreversible vision loss, yet healthy individuals experience nightly intraocular pressure (IOP) elevations without adverse lifetime effects. It is not known which pressure sensors regulate physiological vs. pathological OHT nor how they impact the permeability of the principal drainage pathway through the trabecular meshwork (TM). We report that OHT induced by the circadian rhythm, occlusion of the iridocorneal angle and glucocorticoids requires activation of TRPV4, a stretch-activated cation channel. Wild-type mice responded to nocturnal topical administration of the agonist GSK1016790A with IOP lowering, while intracameral injection of the agonist elevated diurnal IOP. Microinjection of TRPV4 antagonists HC067047 and GSK2193874 lowered IOP during the nocturnal OHT phase and in hypertensive eyes treated with steroids or injection of polystyrene microbeads. Conventional outflow-specific Trpv4 knockdown induced partial IOP lowering in mice with occluded iridocorneal angle and protected retinal neurons from pressure injury. Indicating a central role for TRPV4-dependent mechanosensing in trabecular outflow, HC067047 doubled the outflow facility in TM-populated steroid-treated 3D nanoscaffolds. Tonic TRPV4 signaling thus represents a fundamental property of TM biology as a driver of increased in vitro and in vivo outflow resistance. The TRPV4-dependence of OHT under conditions that mimic primary and secondary glaucomas could be explored as a novel target for glaucoma treatments.

2.
Invest Ophthalmol Vis Sci ; 65(3): 22, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38497513

RESUMEN

Purpose: Loss-of-function variants in the ANGPTL7 gene are associated with protection from glaucoma and reduced intraocular pressure (IOP). We investigated the role of ANGPTL7 in IOP homeostasis and its potential as a target for glaucoma therapeutics. Methods: IOP, outflow facility, and outflow tissue morphology of Angptl7 knockout (KO) mice were assessed with and without dexamethasone (Dex). ANGPTL7 was quantified in conditioned media from human trabecular meshwork cells in response to Dex, in effluent from perfused human donor eyes, and in aqueous humor from human patients treated with steroids. Antibodies to ANGPTL7 were generated and tested in three-dimensional (3D) culture of outflow cells and perfused human donor eyes. Rabbits were injected intravitreally with a neutralizing antibody targeting ANGPTL7, and IOP was measured. Results: IOP was significantly elevated, but outflow facility and outflow tissue morphology were not different between Angptl7 KO mice and littermates. When challenged with Dex, IOP increased in wild-type but not Angptl7 KO mice. In human samples, increased ANGPTL7 was seen in the aqueous humor of patients treated with steroids, regardless of glaucoma status. Using 3D culture, recombinant ANGPTL7 decreased, and ANGPTL7-blocking antibodies increased hydraulic conductivity. Significantly, outflow facility increased in human eyes treated ex vivo with ANGPTL7-blocking antibodies, and IOP decreased for 21 days in rabbits after a single injection of blocking antibodies. Conclusions: Using multiple models, we have demonstrated that excess ANGPTL7 increases outflow resistance and IOP and that neutralizing ANGPTL7 has beneficial effects in both naïve and steroid-induced hypertensive eyes, thus motivating the development of ANGPTL7-targeting therapeutics for the treatment of glaucoma.


Asunto(s)
Glaucoma , Animales , Ratones , Humanos , Conejos , Anticuerpos Bloqueadores , Ojo , Anticuerpos Neutralizantes/farmacología , Ratones Noqueados , Esteroides , Proteínas Similares a la Angiopoyetina , Proteína 7 Similar a la Angiopoyetina
3.
Artículo en Inglés | MEDLINE | ID: mdl-38088745

RESUMEN

Purpose: To determine NCX 470 (0.1%) and Lumigan® (bimatoprost ophthalmic solution, 0.01%-LUM) intraocular pressure (IOP)-lowering activity after single or repeated (5 days) dosing along with changes in aqueous humor (AH) dynamics. Methods: Ocular hypotensive activity of NCX 470 and LUM was compared with vehicle (VEH) in Beagle dogs using TonoVet®. Non-human primates (NHP) and bioengineered three-dimensional (3D) human Trabecular Meshwork/Schlemm's Canal (HTM/HSC™) constructs exposed to transforming growth factor-ß2 (TGFß2) were used to monitor NCX 470 and LUM-induced changes in AH dynamics. Results: NCX 470 (30 µL/eye) showed greater IOP reduction compared with LUM (30 µL/eye) following single AM dosing [maximum change from baseline (CFBmax) = -1.39 ± 0.52, -6.33 ± 0.73, and -3.89 ± 0.66 mmHg (mean ± standard error of the mean) for VEH, NCX 470, and LUM, respectively]. Likewise, repeated 5 days daily dosing of NCX 470 resulted in lower IOP than LUM across the duration of the study (average IOP decrease across tests was -0.45 ± 0.22, -6.06 ± 0.15, and -3.60 ± 0.22 mmHg for VEH, NCX 470, and LUM, respectively). NCX 470 increased outflow facility (Cfl) in vivo in NHP (CflVEH = 0.37 ± 0.09 µL/min/mmHg and CflNCX470 = 0.64 ± 0.17 µL/min/mmHg) as well as in vitro (CHTM/HSC) in HTM/HSC constructs (CHTM/HSC_VEH = 0.47 ± 0.02 µL/min/mm2/mmHg and CHTM/HSC_NCX470 = 0.76 ± 0.03 µL/min/mm2/mmHg). In addition, NCX 470 increased uveoscleral outflow (FuVEH = 0.62 ± 0.26 µL/min and FuNCX470 = 1.53 ± 0.39 µL/min with episcleral venous pressure of 15 mmHg) leaving unaltered aqueous flow (AHFVEH = 2.03 ± 0.22 µL/min and AHFNCX470 = 1.93 ± 0.31 µL/min) in NHP. Conclusions: NCX 470 elicits greater IOP reduction than LUM following single or repeated dosing. Data in NHP and 3D-HTM/HSC constructs suggest that changes in Cfl and Fu account for the robust IOP-lowering effect of NCX 470.

4.
Invest Ophthalmol Vis Sci ; 62(3): 17, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33704360

RESUMEN

Purpose: NCX 667, a novel nitric oxide (NO) donor with an isomannide core, was characterized for its IOP-lowering ability in animal models of ocular hypertension and glaucoma. Bioengineered human trabecular meshwork/Schlemm's canal (HTM/HSC) constructs were used to explore the mode of action. Methods: Ocular normotensive New Zealand white (NZW) rabbits (ONT-rabbits), spontaneously ocular hypertensive pigmented Dutch-belted rabbits (sOHT-rabbits), hypertonic saline (5%)-induced transient ocular hypertensive NZW rabbits (tOHT-rabbits), ocular normotensive Beagle dogs (ONT-dogs), and laser-induced ocular hypertensive cynomolgus monkeys (OHT-monkeys) were used. NCX 667 or vehicle (30 µL) was instilled in a crossover, masked fashion and intraocular pressure (IOP) measured before dosing (baseline) and for several hours thereafter. The ONT-rabbits were used for cyclic guanosine monophosphate (cGMP) determination in ocular tissues after ocular dosing with NCX 667. Transforming growth factor-beta2 (TGFß2) (2.5 ng/mL, six days)-treated HTM/HSC constructs were used to address changes in outflow facility. Results: NCX 667 resulted in robust and dose-dependent IOP decrease in all models used. Maximal IOP-lowering efficacy at 1% was -4.1 ± 0.6, -12.2 ± 2.7, -10.5 ± 2.0, -5.3 ± 0.8, and -6.6 ± 1.9 mmHg, respectively, in ONT-dogs, sOHT-rabbits, tOHT-rabbits, ONT-rabbits, and OHT-monkeys. In ONT-rabbits NCX 667 (1%) increased cGMP in aqueous humor (AH) but not in retina and iris/ciliary body. NCX 667 concentration-dependently increased outflow facility in TGFß2-treated HTM/HSC constructs (outflow facility, 0.10 ± 0.06 and 0.30 ± 0.10 µL/min/mmHg/mm2, respectively, in vehicle- and NCX 667-treated constructs). Conclusions: NCX 667 leads to robust IOP lowering in several animal models. Evidence in HTM/HSC constructs indicate that the IOP reduction likely results from NO-mediated increase of the conventional outflow pathway. Other mechanisms including changes in AH production and episcleral vein pressure may not be excluded at this time.


Asunto(s)
Presión Intraocular/efectos de los fármacos , Limbo de la Córnea/efectos de los fármacos , Donantes de Óxido Nítrico/uso terapéutico , Hipertensión Ocular/tratamiento farmacológico , Malla Trabecular/efectos de los fármacos , Animales , Humor Acuoso/fisiología , Compuestos Bicíclicos Heterocíclicos con Puentes/química , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Perros , Femenino , Limbo de la Córnea/metabolismo , Macaca fascicularis , Conejos , Malla Trabecular/metabolismo , Factor de Crecimiento Transformador beta2/farmacología
5.
Invest Ophthalmol Vis Sci ; 59(1): 383-392, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29346804

RESUMEN

Purpose: To evaluate the relationship between the IOP-lowering effect of trabodenoson and the associated structural and functional changes in the trabecular meshwork (TM). Methods: Six independent cohorts of young and aged mice were exposed to three different topical once-a-day formulations of trabodenoson and eyes were compared to those treated with placebo drops. IOP was measured daily just before drug administration using rebound tonometry. Outflow facility was measured in enucleated eyes. Flow patterns and morphology of conventional outflow tissues were monitored using tracer beads and standard histology, respectively. In parallel, three-dimensional human TM tissue constructs (3D-HTM) were grown and used in experiments to test effect of trabodenoson on the expression of collagen IV, fibronectin, matrix metalloproteinase (MMP)-2 and MMP-14 plus MMP-2 activity. Results: Topical administration of trabodenoson significantly lowered IOP on every day tested, up to 7 days. After 2 days of treatment, outflow facility increased by 26% in aged mice and 30% overall (young and aged mice), which was significantly different from vehicle (P < 0.05). Outflow facility was 15% higher than controls after 7 days of treatment (P = 0.07). While gross morphology was not affected by treatment, the intensity of tracer bead distribution increased by day 7 (P = 0.05). Parallel experiments in 3D-HTM showed that trabodenoson treatment significantly increased MMP-2 activity and MMP-14 abundance, while decreasing fibronectin and collagen IV expression. Conclusions: Trabodenoson alters ECM turnover by TM cells and increases conventional outflow facility, which accounts for its ability to lower IOP in young and aged mice.


Asunto(s)
Antihipertensivos/farmacología , Humor Acuoso/metabolismo , Biomimética , Presión Intraocular/efectos de los fármacos , Nitratos/farmacología , Purinas/farmacología , Receptor de Adenosina A1/metabolismo , Adenosina/farmacología , Administración Oftálmica , Animales , Western Blotting , Línea Celular , Colágeno Tipo IV/metabolismo , Fibronectinas/metabolismo , Humanos , Inmunohistoquímica , Mediciones Luminiscentes , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Andamios del Tejido , Tonometría Ocular , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo
6.
J Org Chem ; 76(6): 1605-13, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21341807

RESUMEN

An enantiospecific and stereoselective total synthesis of the natural product (+)-crispine A has been demonstrated employing a Pictet-Spengler bis-cyclization reaction between commercially available (R)-(-)-methyl 2-amino-3-(3,4-dimethoxyphenyl)propanoate and 4-chloro-1,1-dimethoxybutane to preferentially provide the cis tricyclic adduct. Decarboxylation by a convenient two-step protocol provided the enantiopure natural product in three steps with an overall isolated yield of 32% from the amino acid. The unnatural antipode (-)-crispine A was similarly prepared in three steps from the commercially available (S)-(+)-amino acid.


Asunto(s)
Isoquinolinas/química , Isoquinolinas/síntesis química , Productos Biológicos/síntesis química , Productos Biológicos/química , Estereoisomerismo , Especificidad por Sustrato , Tirosina/química
7.
J Am Chem Soc ; 133(5): 1506-16, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21190384

RESUMEN

The phorboxazoles are mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic products that embody polyketide domains joined via two serine-derived oxazole moieties. Total syntheses of phorboxazole A and analogues have been developed that rely upon the convergent coupling of three fragments via biomimetically inspired de novo oxazole formation. First, the macrolide-containing domain of phorboxazole A was assembled from C3-C17 and C18-C30 building blocks via formation of the C16-C18 oxazole, followed by macrolide ring closure involving an intramolecular Still-Genarri olefination at C2-C3. Alternatively, a ring-closing metathesis process was optimized to deliver the natural product's (2Z)-acrylate with remarkable geometrical selectivity. The C31-C46 side-chain domain was then appended to the macrolide by a second serine amide-derived oxazole assembly. Minimal deprotection then afforded phorboxazole A. This generally effective strategy was then dramatically abbreviated by employing a total synthesis approach wherein both of the natural product's oxazole moieties were installed simultaneously. A key bis-amide precursor to the bis-oxazole was formed in a chemoselective one-pot, bis-amidation sequence without the use of amino or carboxyl protecting groups. Thereafter, both oxazoles were formed from the key C18 and C31 bis-N-(1-hydroxyalkan-2-yl)amide in a simultaneous fashion, involving oxidation-cyclodehydrations. This synthetic strategy provides a total synthesis of phorboxazole A in 18% yield over nine steps from C3-C17 and C18-C30 synthetic fragments. It illustrates the utility of a synthetic design to form a mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic product based upon biomimetic oxazole formation initiated by amide bond formation to join synthetic building blocks.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Oxazoles/química , Oxazoles/síntesis química , Acrilatos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Macrólidos/química , Modelos Moleculares , Conformación Molecular
8.
J Am Chem Soc ; 133(5): 1484-505, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21190385

RESUMEN

The phorboxazole natural products are among the most potent inhibitors of cancer cell division, but they are essentially unavailable from natural sources at present. Laboratory syntheses based upon tri-component fragment coupling strategies have been developed that provide phorboxazole A and analogues in a reliable manner and with unprecedented efficiency. This has been orchestrated to occur via the sequential or simultaneous formation of both of the natural product's oxazole moieties from two serine-derived amides, involving oxidation-cyclodehydrations. The optimized preparation of three pre-assembled components, representing carbons 3-17, 18-30, and 31-46, has been developed. This article details the design and syntheses of these three essential building blocks. The convergent coupling approach is designed to facilitate the incorporation of structural changes within each component to generate unnatural analogues, targeting those with enhanced therapeutic potential and efficacy.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Oxazoles/química , Oxazoles/síntesis química , Productos Biológicos/síntesis química , Productos Biológicos/química , Éteres/química , Modelos Moleculares , Conformación Molecular , Estereoisomerismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...