Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 305: 135490, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35760126

RESUMEN

This study employs ISORROPIA-II for the evaluation of aerosol acidity and quantification of contributions from chemical species and meteorological parameters to acidity variation in the Indian context. PM2.5 samples collected during summer (April-July 2018), post-monsoon (September-November 2018), and winter (December 2018-January 2019) from a rural receptor location in the eastern Indo-Gangetic Plain (IGP) were analyzed for ionic species, water-soluble organic carbon (WSOC), and organic and elemental carbon (OC, EC) fractions. This was followed by estimation of the in situ aerosol pH and liquid water content (LWC) using the forward mode of ISORROPIA-II, which is less sensitive to measurement uncertainty compared to the reverse mode, for a K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O system. Aerosol pH was moderately acidic (summer: 2.93 ± 0.67; post-monsoon: 2.67 ± 0.23; winter: 3.15 ± 0.34) and was most sensitive to SO42- and total ammonium (TNH3) variation. The LWC of aerosol showed an increasing trend from summer (16.6 ± 13.6 µg m-3) through winter (32.9 ± 10.4 µg m-3). With summer as the baseline, the largest changes in aerosol pH during the other seasons was driven by SO42- (ΔpH: -0.70 to -0.82 units), followed by TNH3 (ΔpH: +0.25 to +0.38 units) with K+ and temperature being significant only during winter (ΔpH: +0.51 and + 0.46 units, respectively). The prevalent acidity regime provided three major insights: i) positive summertime Cl- depletion (49 ± 20%) as a consequence of SO42- substitution increased aerosol pH by 0.03 ± 0.20 units and decreased LWC by 2.4 ± 5.9 µg m-3; ii) the rate of strong acidity (H+str) neutralization and the [H+str]/[SO42-] molar ratio suggested the existence of bounded acidity in ammonium-rich (winter) conditions; and iii) significant correlations between LWC, WSOC, and secondary organics during post-monsoon and winter pointed towards a possible indirect role of WSOC in enhancing LWC of aerosol, thereby increasing pH. Given the inability of proxies such as H+str and charge ratios to accurately represent aerosol pH as demonstrated here, this study emphasizes the need for rigorous thermodynamic model-based evaluation of aerosol acidity in the Indian scenario.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Ácidos/análisis , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Compuestos de Amonio/análisis , Carbono/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año , Agua/análisis
2.
Environ Sci Pollut Res Int ; 29(17): 25276-25295, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34839462

RESUMEN

This work is a 7-year study of monsoonal rainwater chemistry (n = 302), over mid-Brahmaputra plain during 2012 to 2018. The samples were analyzed for major chemical parameters viz. pH, electrical conductivity (EC), and ions (SO42-, NO3-, Br-, Cl-, F-, Mg2+, Ca2+, K+, NH4+, Na+, and Li+) to assess the chemistry. The mean pH of rainwater varied among the years, which was maximum in 2018 (6.18 ± 0.72) and minimum in the year 2014 (5.39 ± 0.54), and the variations were significant at p < 0.0001. Ridgeline plots were drawn to visualize interannual variations, which revealed that Ca2+ was the dominant cation in the early years, whereas NH4+ prevailed in the latter years. Mann-Kendall analysis and Sen's slope statistical tests were employed, and it was found that all the ions showed positive S values indicating increasing trends. Enrichment factors (EF) of K+, SO42-, and NO3- were found to be high with respect to both soil and seawater suggesting the influence of emissions from fossil fuel and biomass burning in the chemistry of rainwater. Principal component analysis (PCA) was applied to identify the sources of rain constituents, and five factors were obtained explaining crustal dust, biomass burning, fossil fuel combustion, agricultural emissions, and coal burning as possible sources. Airmass back trajectory clusters and Potential Source Contribution Function (PSCF) were computed by application of HYbrid Single-Particle Lagrangian Integrated Trajectory model to appreciate the terrestrial influence on the chemistry. The results indicated inputs from both local and regional dust and anthropogenic constituents that influenced the monsoonal rainwater chemistry over Brahmaputra Valley.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Polvo/análisis , Iones/análisis , Lluvia , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA