Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39144463

RESUMEN

CO2-based aliphatic polycarbonates (aPCs), produced through the alternating copolymerization of epoxides with CO2, present an appealing option for sustainable polymeric materials owing to their renewable feedstock and degradable characteristics. An ongoing challenge in working with aPCs is modifying their mechanical properties to meet specific demands. Herein, we report that monomer ratio and polymer architecture of aPCs impact not only printability by digital light processing (DLP) additive manufacturing, but also dictate the thermomechanical and degradation properties of the printed objects. We found that block copolymers exhibit tailorable thermomechanical properties ranging from soft elastomeric to strong and brittle as the proportion of hard blocks increases, whereas the homopolymer blend failed to print objects and statistical copolymers delaminated or overcured, displaying the weakest mechanical properties. In addition, the hydrolytic degradation of the prints was demonstrated under various conditions, revealing that BCP prints containing a higher proportion of hard blocks had slower degradation and that statistical copolymer prints degraded more slowly than their BCP counterparts. This study underscores that polymer composition and architecture both play key roles in resin printability and bulk properties, offering significant prospects for advancing sustainable materials in additive manufacturing through polymer design.

2.
Dalton Trans ; 53(27): 11563-11577, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38921544

RESUMEN

An in situ hydrolysis of the P-Cl bonds of the carbophosphazene [{NC(NMe2)}2{NPCl2}] (LPCl2) in the presence of hydrated lanthanide(III) nitrates in a dichloromethane and methanol (2 : 1) solvent mixture afforded a series of novel 1D coordination polymers: [{Ln(LHPO2)3(NO3)2(CH3OH)(H2O)} (Cl)]n {where Ln(III) = Gd (1), Tb (2), Dy (3), or Er (4) and LHPO2 is the hydrolyzed carbophosphazene (LPCl2) ligand}. X-ray crystallographic analysis revealed that complexes 1-4 are isostructural and crystallized in the monoclinic crystal system having P21/c space group. The coordination polymers are formed because of the involvement of the geminal P(O)(OH) moieties of the carbophosphazene ligand. Each lanthanide(III) ion is 9-coordinate (9O) in a distorted muffin geometry. Magnetic measurements revealed that both DyIII and ErIII analogues exhibit field-induced single-molecule magnet (SMM) behavior at 0.8 kOe and 2.2 k Oe, respectively. At such dc fields, the dynamic magnetic susceptibility displays complex behavior with a triple magnetic relaxation contribution for 3, while two contributions were identified for 4. The observed static and dynamic magnetic behavior for complexes 1-4 were further rationalized with the aid of BS-DFT and CASSCF/SO-RASSI/SINGLE_ANISO calculations.

3.
Dalton Trans ; 52(9): 2804-2815, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36752179

RESUMEN

We report the synthesis of [(L)DyIII(Cy3PO)2]·[BPh4] (1-Dy) (where H2L = 2,6-diacetylpyridine bis-benzoylhydrazone and Cy = cyclohexyl) which crystallized in the triclinic, P1̄ space group. The local geometry around Dy(III) in 1-Dy was found to be pentagonal bipyramidal (pseudo-D5h). The AC magnetic susceptibility measurements performed on 1-Dy and on its diluted 1-Y(Dy) samples showed a typical single-molecule magnet signature revealed by the appearance of AC-frequency dependent out-of-phase susceptibility signals in the absence of a static magnetic field. The out-of-phase AC susceptibility signals were well resolved on the application of a small magnetic field (HDC = 500 Oe) and yielded an energy barrier for magnetization flipping of Ueff/kB = 50 K for the diluted derivative. The magnetic studies on 1-Dy and 1-Y(Dy) and data analysis further confirm that Raman and QTM under-barrier magnetic relaxations play a crucial role in lowering Ueff despite the almost axial nature of the Dy(III) ion in 1-Dy. We have rationalized these observations through detailed ab initio calculations performed on the X-ray crystal structure of 1-Dy.

4.
J Med Chem ; 65(24): 16353-16371, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36459415

RESUMEN

Emergence of resistance in cancer cells and dose-limiting side effects severely limit the widespread use of platinum (Pt) anticancer drugs. Multi-action hybrid anticancer agents that are constructed by merging two or more pharmacophores offer the prospect of circumventing issues of Pt drugs. Herein, we report the design, synthesis, and in-depth biological evaluation of a ruthenium-ferrocene (Ru-Fc) bimetallic agent [(η6-p-cymene)Ru(1,1,1-trifluoro-4-oxo-4-ferrocenyl-but-2-en-2-olate)Cl] and its five analogues. Along with aquation/anation chemistry, we evaluated the in vitro antitumor potency, Pt cross-resistance profile, and in vivo antiangiogenic properties. A structure activity analysis was performed to understand the impact of Fc, CF3, and p-cymene groups on the anticancer potency of the Ru-Fc hybrid. Finally, in addition to assessing cellular uptake and intracellular distribution, we demonstrated that the Ru-Fc hybrid binds to nucleophilic biomolecules and produces reactive oxygen species, which causes mitochondrial dysfunction and induces ER stress, leading to poly(ADP-ribose) polymerase-mediated necroptotic cell death.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Animales , Metalocenos , Inhibidores de la Angiogénesis/farmacología , Pez Cebra , Rutenio/farmacología , Rutenio/química , Platino (Metal)/farmacología , Platino (Metal)/química , Antineoplásicos/química , Complejos de Coordinación/química , Línea Celular Tumoral
5.
Dalton Trans ; 51(47): 18187-18202, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36398616

RESUMEN

A series of Schiff base LH ((E)-2-((pyridin-2-ylmethylene)amino)phenol) supported phenoxo bridged symmetric [Dy2(L)2(hfac)4] (1), [Dy2(L)2(tfac)4] (2) and asymmetric [Dy2(L)2(thd)3(NO3)]·1.5H2O (3) binuclear complexes were isolated using differently substituted ß-diketonate co-ligands (Hhfac = hexafluoroacetylacetonate, Htfac = trifluoroacetylacetonate, and Hthd = 2,2,6,6-tetramethyl-3,5-heptanedione). In all the three complexes 1-3, the two LH ligands provide phenoxo bridging and N-donor atoms. The {Dy2(µ2-O)2} magnetic core structures with LH ligands are found to be the same in 1-3 while the dissimilar functionalities of the axially coordinated different ß-diketonate co-ligands play a crucial role in modulating the magnetic anisotropy of individual DyIII sites and magnetic exchange between them. The experimental static magnetic behaviour suggests the presence of intramolecular antiferromagnetic interactions in all the three complexes 1-3. The strength of the magnetic exchange coupling decreases with increasing magnetic anisotropy of individual DyIII ions from complex 1 to complex 3 and simultaneously their zero-field slow magnetic relaxation behaviors were found to increase with effective energy barriers (ΔE/kB) of 9.04 K, 24.06 K and 25.65 K, respectively. Furthermore, the DFT and ab initio theoretical calculations performed on the X-ray structures of complexes 1-3 support our experimental findings.

6.
Dalton Trans ; 51(38): 14721-14733, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36106445

RESUMEN

The tetranuclear NiII2LnIII2 complexes, [{L'2{Ni(MeOH)(µ-OAc)}2(µ3-MeO)2Ln2}, LnIII = YIII (1), GdIII (2), TbIII (3), and DyIII (4)], were prepared using a Schiff base ligand, H3L [H3L = 3-{(2-hydroxy-3-methoxybenzylidene)amino}-2-(2-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one, where {L'}3- is the deprotonated open structure of H3L]. X-ray crystallographic analysis of 1-4 revealed that all the complexes crystallized in the orthorhombic (Pbcn) space group, and possessed an isostructural tetranuclear butterfly or defect dicubane like core. Direct current magnetic susceptibility measurements performed on 2-4 revealed that all these complexes show an intramolecular ferromagnetic exchange coupling. Well resolved zero-field out-of-phase signals in ac magnetic susceptibility measurements were observed only in the case of 3 (Ueff = 13.4 K; τ0 = 4.1(7) × 10-7 s). This was attributed to the comparatively strong NiII-TbIII magnetic exchange coupling. DFT and ab initio calculations were carried out on 1-4 to ascertain the nature of the ferromagnetic NiII-LnIII (JNi-Ln) and LnIII-LnIII (JLn-Ln) interactions. Magnetic anisotropy and magnetic relaxation mechanisms were discussed in detail for 3 and 4. Theoretical studies provide a rationale for the slow relaxation of magnetization in 3.

7.
Dalton Trans ; 51(22): 8766-8776, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35615914

RESUMEN

We hereby report a series of near-linear trinuclear [Zn2LnIII(HL)4(CH3COO)]·(NO3)2 (where LnIII = La (1-La), Ce (2-Ce), Nd (3-Nd), Sm (4-Sm), Tb (5-Tb), and Dy (6-Dy)) complexes with Schiff base ligand (H2L). Magnetization relaxation dynamic studies on complexes 2-Ce, 5-Tb, and 6-Dy reveal the existence of well resolved frequency dependent zero-field out-of-phase χ''M signals, which is an indicator of a typical single-ion magnet behavior observed only for complex 6-Dy with Ueff = 43.7 K (τ0 = 2.42 × 10-6 s). The presence of two Zn(II) ions near the coordination geometry of Dy(III) ion in 6-Dy is likely to keep the first excited mJ levels significantly away from the ground state mJ level and is responsible for the observation of zero field slow magnetic relaxation behavior. The data collected in the presence of a magnetic field of Hdc = 2 kOe enhances the energy barrier by two-fold (88.63 K, τ0 = 1.36 × 10-7 s) in 6-Dy, suggesting the presence of QTM at zero field along with other under barrier relaxations, such as the Raman process. On the other hand, complex 2-Ce shows field induced slow relaxation of magnetization behavior with an effective energy barrier of 12.24 K (τ0 = 1.89 × 10-4 s). The CASSCF/SO-RASSI/SINGLE_ANISO based ab initio calculations using MOLCAS 8.0 code further rationalized our experimentally observed magnetization dynamics.

8.
Inorg Chem ; 61(14): 5572-5587, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35348317

RESUMEN

The mechanistic investigations between Cu(II) and the anisotropic lanthanides (Ln(III)) are not much explored to date. This is due to the complicated energy spectrum which arises due to the orbital angular momentum of anisotropic lanthanides. Interestingly, the exchange coupling J in Ln(III)-Cu(II) systems was found to be antiferromagnetic for <4f7 metal ions and ferromagnetic for ≥4f7 metal ions, while the net magnitude of JTotal strength gradually decreases moving from f1 to f13. While this is established in several examples, the reason for this intriguing trend is not rationalized. In this article, we have taken up these challenging tasks by synthesizing a family of complexes with the general molecular formula [Cu2Ln(HL)4(NO3)](NO3)2, where Ln = La (1-La), Ce (2-Ce), Pr (3-Pr), Gd (4-Gd), Tb (5-Tb), Dy (6-Dy), and Ho (7-Ho) and HL = C15H15N1O3; (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate) is a monodeprotonated tridentate Schiff base ligand. Detailed dc magnetic susceptibility measurements performed for all the complexes reveal that the Cu(II) ion is coupled ferromagnetically to the respective Ln(III) ion, which has more than seven electrons in the 4f shell, while an antiferromagnetic coupling is witnessed if Ln(III) has less than seven electrons. The strength of the exchange coupling constant was quantitatively determined for representative complexes from the high-field/high-frequency electron paramagnetic resonance spectroscopy which follows the order of 4-Gd (1.50(10) cm-1) > 5-Tb (1.18(10) cm-1) > 6-Dy (0.56(10) cm-1 based on the -2JCu-Ln(SCu1→·JLnz→+SCu2→·JLnz→) spin Hamiltonian. The increased axiality in 5-Tb and 6-Dy due to the presence of 3d ions in the near vicinity of an oblate ion and the increased exchange coupling strength between Cu(II) and Tb(III) or Dy(III) is the ideal combination to stabilize magnetic bistability in these complexes in the absence of an external magnetic field with the effective energy barrier of 15.7 K (τo = 2.49 × 10-6 s) and 12.6 K (τo = 1.70 × 10-5 s), respectively. To rationalize this experimental trend, we have performed ab initio CASSCF and DFT calculations. To compute the J values, we have employed POLY_ANISO routines and utilized the computed data to establish the generic mechanism of magnetic coupling in {Cu-Ln-Cu} motifs. These mechanistic findings reveal the importance of 5d orbitals and their energy with respect to the dx2-y2 orbital of Cu(II) ions in controlling the magnetic coupling of {Cu-4f} complexes.

9.
Dalton Trans ; 51(10): 4122-4134, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35188157

RESUMEN

We herein report a series of near-linear trinuclear complexes [Co2Ln(HL)4(NO3)](NO3)2 (where HL = (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate) with Ln(III) = La (1), Ce (2), Pr (3)). For the comparative study, we have also included the recently reported analogous complexes of Gd(III), Tb(III), and Dy(III) (complexes 4-6) with the same H2L ligand. The experimental nature of the dc magnetic susceptibilities profile and an empirical approach revealed that the magnetic exchange interaction between Co(II) and Ln(III) having <4f7 (complexes 2 and 3) is antiferromagnetic while the dominant interaction between Co(II) and Ln(III) having ≥4f7 (complexes 4-6) is ferromagnetic. Dynamic magnetic relaxation studies on complexes 1-3 revealed the field induced single-molecule magnetic (SMM) behavior of 1 and 3 with effective energy barriers of 10.65 K and 15.03 K respectively, for magnetic relaxation. To the best of our knowledge, 3d-Pr(III) based zero or field induced SMMs have not been reported to date. CASSCF/SO-RASSI/SINGLE_ANISO based ab initio calculations on the X-ray structures of complexes 1-6, followed by POLY_ANISO simulations, estimated the magnetic exchange coupling constants JCo-Ln and JCo-Co and also rationalized our experimental findings for the dynamic magnetic properties.

10.
Dalton Trans ; 49(43): 15404-15416, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33140796

RESUMEN

The reaction of a bulky acetyl acetone ligand 1,3-dimesitylpropane-1,3-dione (MesacacH) with hydrated lanthanide chlorides in the presence of tetramethylammonium hydroxide afforded a new family of neutral mononuclear LnIII complexes [Ln(Mesacac)3(DMF)] (Ln = Dy (1); Tb (2); Y0.91Dy0.09 (3); and Er (4)). The molecular structures of these complexes were confirmed by single crystal X-ray diffraction studies. The coordination geometries of the LnIII centre were analysed by SHAPE analysis which revealed a capped octahedral geometry in 1-4. Photoluminescence studies showed ligand-sensitized green emissions for 2 with an appreciable quantum yield of 0.83%. Static (dc) and dynamic (ac) magnetic studies of complexes 1 and 3 were performed. The dynamic magnetic study revealed that complex 1 exhibits zero-field slow relaxation of the magnetization without showing a clear maximum in the out-of-phase ac susceptibility plots. However, magnetic dilution of 1 with the YIII metal ion (complex 3) and/or the application of a dc magnetic field induces a strong frequency dependence of the ac susceptibility signals with χ''M peaks in the 3-10 K temperature range, thus supporting field-induced SMM behaviour of 1. The relaxation process takes place through a combination of the Orbach and Raman mechanisms. The fitting of the temperature dependence of the relaxation time to the equation τ-1 = τ0-1 exp(-Ueff/kBT) + BTn, allows the extraction of the effective energy barrier Ueff/kB = 70 K (48.7 cm-1) and pre-exponential parameter of τ0 = 2.7 × 10-7 s for the Orbach mechanism (first term) and the parameters B = 0.04 s-1 K-n and n = 6.11, for the Raman mechanism (second term).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...