Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36500155

RESUMEN

Cricket is one of the most popular global sports, and cricket pads are important personal protective gear used for shock absorption and peak deceleration of the impact forces of the cricket ball for both batsmen and wicket keepers. The materials selection of the padding should be considered according to requirements. In the present study, flexible composites were manufactured using knitted unidirectional thermoplastic composite prepregs. Prepregs were fabricated using thermoplastic yarns, e.g., High Density Polyethylene (HDPE), Polypropylene (PP), and Low Melting Polyester (LMPE). Para-aramid (Kevlar) and Flax yarns were used as inlay. The structures were stacked in three and five layers, and hot compression was used to convert thermoplastic yarn into matrix. A total of twelve samples were prepared, and their mechanical properties were evaluated. Tensile and flexural properties, short beam strength, and impact properties were optimized using the multi-criteria decision-making (MCDM) technique for order performance by similarity to ideal solution (TOPSIS). This approach was used to select the best material for use in cricket pads. The candidate samples were ranked using statistical techniques. The optimum sample was found to be FP5, i.e., Flax with polypropylene using five layers, which exhibited the maximum impact strength. The results showed that the mechanical properties were improved in general by increasing the number of layers. The significance and percentage contribution of each factor was obtained by ANOVA (α = 0.10) and pie chart, which showed Factors A and C (inlay yarn and number of layers) to be the main contributors. The optimal samples showed superior impact-related performance compared to a market sample cricket pad.

2.
Nanoscale ; 12(18): 10335-10346, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32367086

RESUMEN

Photoreversible color switching systems (PCSSs) have attracted increasing attention in various applications, but in most PCSSs the discoloration process usually relies on harmful UV light as a stimulus and the recoloration requires high temperature. To solve these problems, we have designed and prepared CeO2-x nanodots as novel photocatalytic components in PCSSs that respond to two kinds of visible light. CeO2-x nanodots are prepared by a solvothermal reaction with l-ascorbic acid as the reducing agent. CeO2-x nanodots with a size of ∼2 nm have a high concentration of oxygen vacancies, which confers a broadened photoabsorption with an edge at 500 nm, as well as a weak photoabsorption tail in the visible region (500-800 nm). To realize the color switching, both the CeO2-x/Dye/H2O solution and CeO2-x/dye/hydroxyethyl cellulose (HEC)-coated fabrics have been prepared. Under blue (450 nm) light irradiation, both the solution and fabric show a rapid discoloration in 30 s and 150 s, respectively, due to the efficient photocatalytic reduction of the redox dye by CeO2-x. Conversely, red (630 nm) light irradiation with air confers a rapid recoloration in 35 s for the solution and 200 s for the fabric, resulting from CeO2-x-mediated self-catalyzed oxidation. In particular, the required images and letters can be remotely printed on CeO2-x/Dye/HEC-coated T-shirts with a 450 nm laser pen, and then erased with 630 nm light, with high reversibility and stability. Therefore, the present CeO2-x/Dye/HEC PCSSs have great potential to construct rewritable smart fabrics for various applications.

3.
ACS Appl Mater Interfaces ; 11(14): 13370-13379, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30888142

RESUMEN

Remote, rapid, and ink-free printing/erasure on fabrics has great potential to revolutionize specialized clothing in numerous applications including fashion/aesthetic and security fields, but the construction of such smart fabrics has not been realized due to underlying obstacles in obtaining suitable photoreversible color-switching systems (PCSS). To address this problem, we have prepared TiO2- x nanorods as photocatalytic and photothermal component. With redox dyes as reversible color indicators and hydroxyethyl cellulose (HEC) as polymer matrix, TiO2- x/dye/HEC-based PCSS is coated on poly(dimethylsiloxane)-treated cotton fabric. Under 365 nm light irradiation, discoloration occurs in 180 s, resulting from the efficient photocatalytic reduction of the dye. On the contrary, when the colorless fabric is irradiated by 808 nm light, recoloration occurs in a very short time (∼100 s), far lower than the traditional heating mode (30-8 min at 90-150 °C). This rapid recoloration should be attributed to the localized high temperature (164.3-184.5 °C) induced by photothermal effect of TiO2- x. Particularly, when TiO2- x/dye/HEC-based PCSS is extended to coat commercial clothes (such as T-shirts), red/green/blue figures/letters can be rapidly and remotely printed by UV-light pen and then erased by near-infrared light, with high cycle stability. Therefore, such rewritable smart fabric represents an attractive alternative to regular clothes in meeting the increasing aesthetic or camouflage needs.

4.
J Nanosci Nanotechnol ; 14(10): 7427-31, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25942804

RESUMEN

Human hand signifies a magnificent and challenging example for scientists and engineers trying to replicate its complex structure and functionality. This paper proposes a bio-mechatronic approach for the design of an anthropomorphic artificial hand capable of performing basic human hand motions with fundamental gripping functionality. The dexterity of the artificial hand is exhibited by imitating the natural motion of the human fingers. Imitation is produced according to the data acquired from the flex sensors attached to the human fingers. In order to have proper gripping, closed-loop control is implemented using the tactile sensors. Feedback for the closed-loop control is provided by force sensing resistors (FSRs), attached on the fingertips of the robotic hand. These sensors also enable handling of fragile objects. The mathematical model is derived using forward kinematics and also simulated on MATLAB to ascertain the position of robotic fingers in 3D space.


Asunto(s)
Mano , Robótica/economía , Robótica/instrumentación , Simulación por Computador , Diseño de Equipo/economía , Dedos/fisiología , Mano/fisiología , Fuerza de la Mano , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...