Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioeng Transl Med ; 8(6): e10592, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023728

RESUMEN

Diabetes is a known risk factor for various cardiovascular complications, mediated by endothelial dysfunction. Despite the high prevalence of this metabolic disorder, there is a lack of in vitro models that recapitulate the complexity of genetic and environmental factors associated with diabetic endothelial dysfunction. Here, we utilized human induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) to develop in vitro models of diabetic endothelial dysfunction. We found that the diabetic phenotype was recapitulated in diabetic patient-derived iPSC-ECs, even in the absence of a diabetogenic environment. Subsequent exposure to culture conditions that mimic the diabetic clinical chemistry induced a diabetic phenotype in healthy iPSC-ECs but did not affect the already dysfunctional diabetic iPSC-ECs. RNA-seq analysis revealed extensive transcriptome-wide differences between cells derived from healthy individuals and diabetic patients. The in vitro disease models were used as a screening platform which identified angiotensin receptor blockers (ARBs) that improved endothelial function in vitro for each patient. In summary, we present in vitro models of diabetic endothelial dysfunction using iPSC technology, taking into account the complexity of genetic and environmental factors in the metabolic disorder. Our study provides novel insights into the pathophysiology of diabetic endothelial dysfunction and highlights the potential of iPSC-based models for drug discovery and personalized medicine.

2.
Nature ; 620(7974): 651-659, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37468627

RESUMEN

Even among genetically identical cancer cells, resistance to therapy frequently emerges from a small subset of those cells1-7. Molecular differences in rare individual cells in the initial population enable certain cells to become resistant to therapy7-9; however, comparatively little is known about the variability in the resistance outcomes. Here we develop and apply FateMap, a framework that combines DNA barcoding with single-cell RNA sequencing, to reveal the fates of hundreds of thousands of clones exposed to anti-cancer therapies. We show that resistant clones emerging from single-cell-derived cancer cells adopt molecularly, morphologically and functionally distinct resistant types. These resistant types are largely predetermined by molecular differences between cells before drug addition and not by extrinsic factors. Changes in the dose and type of drug can switch the resistant type of an initial cell, resulting in the generation and elimination of certain resistant types. Samples from patients show evidence for the existence of these resistant types in a clinical context. We observed diversity in resistant types across several single-cell-derived cancer cell lines and cell types treated with a variety of drugs. The diversity of resistant types as a result of the variability in intrinsic cell states may be a generic feature of responses to external cues.


Asunto(s)
Antineoplásicos , Células Clonales , Resistencia a Antineoplásicos , Neoplasias , Humanos , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Células Clonales/patología , Código de Barras del ADN Taxonómico , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , RNA-Seq , Análisis de Expresión Génica de una Sola Célula , Células Tumorales Cultivadas , Antineoplásicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA