Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(24): 11524-11529, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38819792

RESUMEN

2D nanostructures of noble metals hold great potential for developing efficient electrocatalysts due to their high atom efficiency associated with their large specific surface area and abundant active sites. Here, we introduce a one-pot solvothermal synthesis method that can enable the fabrication of freestanding atomically thin Ir nanosheets. The thermal decomposition of a complex of Ir and a long-chain amine, which could readily be formed with the assistance of a strong base, under CO flow conditions successfully yielded Ir nanosheets consisting of 2-4 atomic layers. The prepared Ir nanosheets showed prominent activity and stability toward oxygen evolution electrocatalysis in acidic conditions, which can be attributed to their ultrathin 2D structure.

2.
Small ; : e2401230, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698589

RESUMEN

Control over the morphology of nanomaterials to have a 2D structure and manipulating the surface strain of nanostructures through defect control have proved to be promising for developing efficient catalysts for sustainable chemical and energy conversion. Here a one-pot aqueous synthesis route of freestanding Pd nanosheets with a penta-twinned structure (PdPT NSs) is presented. The generation of the penta-twinned nanosheet structure can be succeeded by directing the anisotropic growth of Pd under the controlled reduction kinetics of Pd precursors. Experimental and computational investigations showed that the surface atoms of the PdPT NSs are effectively under a compressive environment due to the strain imposed by their twin boundary defects. Due to the twin boundary-induced surface strain as well as the 2D structure of the PdPT NSs, they exhibited highly enhanced electrocatalytic activity for oxygen reduction reaction compared to Pd nanosheets without a twin boundary, 3D Pd nanocrystals, and commercial Pd/C and Pt/C catalysts.

3.
Nano Lett ; 23(5): 1774-1780, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36802375

RESUMEN

Conjugating plasmonic metals with catalytically active materials with controlled configurations can harness their light energy harvesting ability in catalysis. Herein, we present a well-defined core-shell nanostructure composed of an octahedral Au nanocrystal core and a PdPt alloy shell as a bifunctional energy conversion platform for plasmon-enhanced electrocatalysis. The prepared Au@PdPt core-shell nanostructures exhibited significant enhancements in electrocatalytic activity for methanol oxidation and oxygen reduction reactions under visible-light irradiation. Our experimental and computational studies revealed that the electronic hybridization of Pd and Pt allows the alloy material to have a large imaginary dielectric function, which can efficiently induce the shell-biased distribution of plasmon energy upon illumination and, hence, its relaxation at the catalytically active region to promote electrocatalysis.

4.
Nano Lett ; 22(22): 9115-9121, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36350225

RESUMEN

We have developed a synthesis method of rhombic dodecahedral Pd@Pt core-shell nanocrystals bound exclusively by {110} facets with controlled numbers of Pt atomic layers to study the surface strain-catalytic activity relationship of Pt{110} facets. Through control over growth kinetics, the epitaxial and conformal overgrowth of Pt shells on the {110} facets of rhombic dodecahedral Pd nanocrystals could be achieved. Notably, the electrocatalytic activity of the Pd@Pt nanocrystals toward oxygen reduction reaction decreased as their Pt shells became thinner and thus more in-plane compressive surface strain was applied, which is in sharp contrast to previous reports on Pt-based catalysts. Density functional theory calculations revealed that the characteristic strain-activity relationship of Pt{110} facets is the result of the counteraction of out-of-plane surface strain against the applied in-plane surface strain, which can effectively impose a tensile environment on the surface atoms of the Pd@Pt nanocrystals under the compressive in-plane strain.

5.
Science ; 370(6513): 214-219, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33033217

RESUMEN

In place of functional groups that impose different inductive effects, we immobilize molecules carrying thiol groups on a gold electrode. By applying different voltages, the properties of the immobilized molecules can be tuned. The base-catalyzed saponification of benzoic esters is fully inhibited by applying a mildly negative voltage of -0.25 volt versus open circuit potential. Furthermore, the rate of a Suzuki-Miyaura cross-coupling reaction can be changed by applying a voltage when the arylhalide substrate is immobilized on a gold electrode. Finally, a two-step carboxylic acid amidation is shown to benefit from a switch in applied voltage between addition of a carbodiimide coupling reagent and introduction of the amine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...