Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(27): 29139-29158, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39005800

RESUMEN

Hydrogel encapsulation is a promising carrier for cell and drug delivery due to its ability to protect the encapsulated entities from harsh physiological conditions and enhance their therapeutic efficacy and bioavailability. However, there is not yet consensus on the optimal hydrogel type, encapsulation method, and clinical application. Therefore, a systematic review of hydrogel encapsulation techniques and their potential for clinical application is needed to provide a comprehensive and up-to-date overview. In this systematic review, we searched electronic databases for articles published between 2008 and 2023 that described the encapsulation of cells or drug molecules within hydrogels. Herein, we identified 9 relevant studies that met the inclusion and exclusion criteria of our study. Our analysis revealed that the physicochemical properties of the hydrogel, such as its porosity, swelling behavior, and degradation rate, play a critical role in the encapsulation of cells or drug molecules. Furthermore, the encapsulation method, including physical, chemical, or biological methods, can affect the encapsulated entities' stability, bioavailability, and therapeutic efficacy. Challenges of hydrogel encapsulation include poor control over the release of encapsulated entities, limited shelf life, and potential immune responses. Future directions of hydrogel encapsulation include the development of novel hydrogel and encapsulation methods and the integration of hydrogel encapsulation with other technologies, such as 3D printing and gene editing. In conclusion, this review is useful for researchers, clinicians, and policymakers who are interested in this field of drug delivery and regenerative medicine that can serve as a guide for the future development of novel technologies that can be applied into clinical practice.

2.
J Mov Disord ; 10(3): 158-160, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28889721

RESUMEN

Spinal myoclonus is a sudden, brief, and involuntary movement of segmental or propriospinal muscle groups. Spinal myoclonus has occasionally been reported in patients undergoing opioid therapy, but the pathophysiology of opioid-induced myoclonus has not been elucidated yet. Here, we present two patients with spinal segmental myoclonus secondary to ischemic and radiation myelopathy. Conventional medications did not help treat persistent myoclonus in both legs. Continuous intrathecal morphine infusion was implanted for pain control in one patient, which relieved spinal myoclonus entirely. This experience led to the application of this method with a second patient, leading to the same gratifying result. Spinal myoclonus reemerged as soon as the morphine pumps were off, which confirmed the therapeutic role of opioids. In contrast to the opioid-induced myoclonus, these cases show a benefit of opioids on spinal myoclonus, which could be explained by synaptic reorganization after pathologic insults in the spinal cord.

3.
Inorg Chem ; 56(11): 6609-6623, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28509538

RESUMEN

Nine bis(thiosemicarbazone) (BTSC) cobalt(III) complexes of the general formula [Co(BTSC)(L)2]NO3 were synthesized, where BTSC = diacetyl bis(thiosemicarbazone) (ATS), pyruvaldehyde bis(thiosemicarbazone) (PTS), or glyoxal bis(thiosemicarbazone) (GTS) and L = ammonia, imidazole (Im), or benzylamine (BnA). These compounds were characterized by multinuclear NMR spectroscopy, mass spectrometry, cyclic voltammetry, and X-ray crystallography. Their stability in phosphate-buffered saline was investigated and found to be highly dependent on the nature of the axial ligand, L. These studies revealed that complex stability is primarily dictated by the axial ligand following the sequence NH3 > Im > BnA. The cellular uptake and cytotoxicity in cancer cells were also determined. Both the cellular uptake and cytotoxicity were significantly affected by the nature of the equatorial BTSC. Complexes of ATS were taken up much more effectively than those of PTS and GTS. The cytotoxicity of the complexes was correlated to that of the free ligand. Cell uptake and cytotoxicity were also determined under hypoxic conditions. Only minor differences in the hypoxia activity and uptake were observed. Treatment of the cancer cells with the copper-depleting agent tetrathiomolybdate decreased the cytotoxic potency of the complexes, indicating that they may operate via a copper-dependent mechanism. These results provide a structure-activity relationship for this class of compounds, which may be applied for the rational design of new cobalt(III) anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Cobalto/farmacología , Complejos de Coordinación/farmacología , Tiosemicarbazonas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cobalto/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Estructura Molecular , Relación Estructura-Actividad , Tiosemicarbazonas/química
4.
J Phys Chem B ; 112(49): 15875-82, 2008 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19367951

RESUMEN

The effect of the number and position of the positive charges on porphyrin with respect to the mode of binding to poly[d(G-C)2] and poly[d(A-T)2] were investigated by absorption and polarized spectroscopy, including circular and linear dichroism (CD and LD). Meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP), which possesses four positive charges on the periphery pyridinium rings, produces a negative CD and wavelength-independent reduced LD (LDr) spectra in the Soret absorption region when it associates with poly[d(G-C)2]. These spectral characteristics have been considered as diagnostic for intercalation. In contrast, both trans- and cis-bis(N-methylpyridinium-4-yl)diphenylporphyrin (trans- and cis-BMPyP), where the number of positive charges was reduced to two, multisignate CD and strong wavelength-dependence of the LDr spectra were observed, indicating that these porphyrins do not intercalate. Therefore, four positive charges are required for TMPyP intercalation. When associated with poly[d(A-T)2], trans-BMPyP exhibited a positive CD signal at a low [porphyrin]/[nucleobase] ratio with the appearance of a bisignate CD upon increase of the mixing ratio, suggestive of binding at the groove of the double helix at low mixing ratios, and stacking at increasing mixing ratios. Conversely, no monomeric binding was evident in the bis-BMPyP bisignate CD spectrum; hence, only the stacking mode was found for cis-BMPyP, even at the lowest [porphyrin]/[nucleobase] ratio, suggesting the importance of the position of the positive charges in determining monomeric groove binding or stacking. The binding geometries of trans- and cis-BMPyP were similar when associated with poly[d(A-T)2], as determined from the similar LDr spectrum. When associated with DNA, TMPyP exhibited similar spectral properties with that of the TMPyP-poly[d(G-C)2] complex, indicating intercalation of TMPyP between the DNA base pairs. Conversely, CD and LDr characteristics of both trans- and cis-BMPyP-DNA complexes resembled those that complexed with poly[d(A-T)2] at a high [porphyrin]/[DNA] ratio, suggesting that both porphyrins were stacked along the DNA stem.


Asunto(s)
ADN/química , Sustancias Intercalantes/química , Poli A/química , Poli C/química , Poli G/química , Poli T/química , Porfirinas/química , Dicroismo Circular , Estructura Molecular , Desnaturalización de Ácido Nucleico , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...