Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37764622

RESUMEN

Boron nitride nanotubes (BNNTs) were purified without the use of a dispersant by controlling the surface tension and steric repulsion of solvent molecules. This method effectively enhanced the difference in solubilities of impurities and BNNTs. The purification process involved optimizing the alkyl-chains of alcohol solvents and adjusting the concentration of alcohol solvent in water to regulate surface tension and steric repulsion. Among the solvents tested, a 70 wt% t-butylalcohol in water mixture exhibited the highest selective isolation of BNNTs from impurities based on differences in solubilities. This favorable outcome was attributed to the surface tension matching with BNNTs, steric repulsion from bulky alkyl chain structures, and differences in interfacial energy between BNNT-liquid and impurity-liquid interfaces. Through this optimized purification process, impurities were removed to an extent of up to 93.3%. Additionally, the purified BNNTs exhibited a distinct liquid crystal phase, which was not observed in the unpurified BNNTs.

2.
Nano Lett ; 23(18): 8515-8523, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37669534

RESUMEN

Lithium (Li) metal is a promising anode material for high-energy-density Li batteries due to its high specific capacity. However, the uneven deposition of Li metal causes significant volume expansion and safety concerns. Here, we investigate the impact of a gradient-infused Li-metal anode using silver (Ag)-decorated carbonized cellulose fibers (Ag@CC) as a three-dimensional (3D) current collector. The loading level of the gradient-infused Li-metal anode is controlled by the thermal infusion time of molten Li. In particular, a 5 s infusion time in the Ag@CC current collector creates an appropriate space with a lithiophilic surface, resulting in improved cycling stability and a reduced volume expansion rate. Moreover, integrating a 5 s Ag@CC anode with a high-capacity cathode demonstrates superior electrochemical performance with minimal volume expansion. This suggests that a gradient-infused Li-metal anode using Ag@CC as a 3D current collector represents a novel design strategy for Li-metal-based high-capacity Li-ion batteries.

3.
ACS Appl Mater Interfaces ; 15(20): 24681-24692, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37163756

RESUMEN

Microfiber fabrication via wet-spinning of lyotropic liquid crystals (LCs) with anisotropic nanomaterials has gained increased attention due to the microfibers' excellent physical/chemical properties originating from the unidirectional alignment of anisotropic nanomaterials along the fiber axis with high packing density. For wet-spinning of the microfibers, however, preparing lyotropic LCs by achieving high colloidal stability of anisotropic nanomaterials, even at high concentrations, has been a critically unmet prerequisite, especially for recently emerging nanomaterials. Here, we propose a cationically charged polymeric stabilizer that can efficiently be adsorbed on the surface of boron nitride nanotubes (BNNTs), which provide steric hindrance in combination with Coulombic repulsion leading to high colloidal stability of BNNTs up to 22 wt %. The BNNT LCs prepared from the dispersions with various stabilizers were systematically compared using optical and rheological analysis to optimize the phase behavior and rheological properties for wet-spinning of the BNNT LCs. Systematic optical and mechanical characterizations of the BNNT microfibers with aligned BNNTs along the fiber axis revealed that properties of the microfibers, such as their tensile strength, packing density, and degree of BNNT alignment, were highly dependent on the quality of BNNT LCs directly related to the types of stabilizers.

4.
Materials (Basel) ; 16(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903122

RESUMEN

Defects on graphene over a micrometer in size were selectively blocked using polyvinyl alcohol through the formation of hydrogen bonding with defects. Because this hydrophilic PVA does not prefer to be located on the hydrophobic graphene surface, PVA selectively filled hydrophilic defects on graphene after the process of deposition through the solution. The mechanism of the selective deposition via hydrophilic-hydrophilic interactions was also supported by scanning tunneling microscopy and atomic force microscopy analysis of selective deposition of hydrophobic alkanes on hydrophobic graphene surface and observation of PVA initial growth at defect edges.

5.
Small Methods ; 7(4): e2201341, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36707408

RESUMEN

Boron nitride nanotube (BNNT) has attracted recent attention owing to its exceptional material properties; yet, practical implementation in real-life applications has been elusive, mainly due to the purity issues associated with its large-scale synthesis. Although different purification methods have been discussed so far, there lacks a scalable solution method in the community. In this work, a simple, high-throughput, and scalable purification of BNNT is reported via modification of an established sorting technique, aqueous polymer two-phase extraction. A complete partition mapping of the boron nitride species is established, which enables the segregation of the highly pure BNNT with a major impurity removal efficiency of > 98%. A successful scaling up of the process is illustrated and provides solid evidence of its diameter sorting behavior. Last, towards its macroscopic assemblies, a liquid crystal of the purified BNNT is demonstrated. The effort toward large-scale solution purification of BNNT is believed to contribute significantly to the macroscopic realization of its exceptional properties in the near future.

6.
Nano Lett ; 22(1): 286-293, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34978186

RESUMEN

Self-assembled alkane layers are introduced between graphene layers to physically block nanometer size defects in graphene and lateral gas pathways between graphene layers. A well-defined hexatriacontane (HTC) monolayer on graphene could cover nanometer-size defects because of the flexible nature and strong intermolecular van der Waals interactions of alkane, despite the roughness of graphene. In addition, HTC multilayers between graphene layers greatly improve their adhesion. This indicates that HTC multilayers between graphene layers can effectively block the lateral pathway between graphene layers by filling open space with close-packed self-assembled alkanes. By these mechanisms, alternately stacked composites of graphene and self-assembled alkane layers greatly increase the gas-barrier property to a water vapor transmission rate (WVTR) as low as 1.2 × 10-3 g/(m2 day), whereas stacked graphene layers generally show a WVTR < 0.5 g/(m2 day). Furthermore, the self-assembled alkane layers have superior crystallinity and wide bandgap, so they have little effect on the transmittance.

7.
ACS Appl Mater Interfaces ; 13(10): 12417-12424, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33650842

RESUMEN

Boron nitride nanotubes (BNNTs) have attracted increasing attention for their exceptional thermal, electronic, and optical properties. However, the progress in BNNTs applications has largely been limited by the low purity of as-synthesized BNNTs and inefficient solution-processing protocols due mainly to the instability of BNNTs in most of the solvents. Therefore, fabrication of highly pure, stable, and fully individualized BNNTs in a rational manner is required. Here, we report a significant improvement in the preparation of well-dispersed BNNTs, utilizing conjugated polymers that interact with BNNTs, allowing selective sorting and individualization of the nanotubes. Evidence of strong interactions between the polymers and BNNTs was observed by optical absorption and photoluminescence spectroscopies, while effective individualization was observed by electron microscopy. The sorted BNNTs were successfully used in a solution-processing protocol called dose-controlled, floating evaporative self-assembly (DFES) previously established for single-walled carbon nanotubes (SWCNT) array fabrication. A device fabricated via DFES from the sorted BNNTs mixed with polymer-wrapped, semiconducting single-walled carbon nanotubes (s-SWCNTs) exhibited an on-state conductance of 253 ± 6 µS µm-1 and an on/off ratio of 106.6±0.4 for a gate voltage of -0.1 V. This breakthrough in BNNT dispersion and isolation is a significant advancement toward the exploitation of BNNTs in future applications.

8.
Int J Mol Sci ; 21(4)2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102322

RESUMEN

Commercially available boron nitride nanotubes (BNNTs) and their purified form (pBNNTs) were dispersed in aqueous solutions with various dispersants, and their cytotoxicity and drug encapsulation capacity were monitored. Our data suggest that pBNNTs showed an average increase in dispersibility of 37.3% in aqueous solution in the presence of 10 different dispersants. In addition, 100 µg of pBNNTs induced an average decrease in cytotoxicity of 27.4% compared to same amount of BNNTs in normal cell lines. The same amount of pBNNTs can encapsulate 10.4-fold more drug (camptothecin) compared to BNNTs. These data suggest that the purification of BNNTs improves several of their properties, which can be applied to biological experiments and are thus essential in the biological application of BNNTs.


Asunto(s)
Compuestos de Boro/química , Nanotecnología/métodos , Nanotubos/química , Agua/química , Células 3T3-L1 , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Compuestos de Boro/aislamiento & purificación , Compuestos de Boro/farmacología , Células CHO , Células CACO-2 , Camptotecina/química , Camptotecina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cricetinae , Cricetulus , Composición de Medicamentos/métodos , Humanos , Ratones
9.
Sci Rep ; 9(1): 15674, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666654

RESUMEN

The morphological analysis of the end of boron nitride nanotubes (BNNTs) using high-resolution transmission electron microscopy (HR-TEM) can provide valuable insight into the growth mechanism in high temperature pressure (HTP) laser ablation where the best quality of BNNT materials can be obtained so far. Two growth modes of BNNT coexisting during the synthesis process have been proposed based on HR-TEM observation and length analysis. One is the root growth mode, in which boron nitride (BN) species formed via the surface interaction between surrounding N2 molecules and boron nanodroplets incorporate into the tubular structure. Another mode called open-end growth mode means the prolongation of tube growth from the exposed BN edge surrounding the surface of boron nanodroplets which is constructed by the heterogeneous nucleation of absorbed BN radicals from the gas plume. The statistical data, the proportions of end structures and the length of BNNTs, could be fitted to two growth modes, and the open-end growth mode is found to be especially effective in producing longer nanotubes with a higher growth rate. The scientific understanding of the growth mechanism is believed to provide the control for optimized production of BNNTs.

10.
Adv Sci (Weinh) ; 5(12): 1801365, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30581715

RESUMEN

Conducting polymer-based organic electrochemical capacitor materials have attracted attention because of their highly conductive nature and highly reversible redox reactions on the surface of electrodes. However, owing to their poor stabilities in aprotic electrolytes, alternative organic electrochemical capacitive electrodes are being actively sought. Here, fluorine atoms are introduced into contorted hexabenzocoronene (cHBC) to achieve the first small-molecule-based organic capacitive energy-storage cells that operate at high current rates with satisfactory specific capacities of ≈160 mA h g-1 and superior cycle capabilities (>400) without changing significantly. This high capacitive behavior in the P21/c crystal phase of fluorinated cHBC (F-cHBC) is caused mainly by the fluorine atoms at the end of each peripheral aromatic ring. Combined Monte Carlo simulations and density functional theory (DFT) calculations show that the most electronegative fluorine atoms accelerate ion diffusion on the surface to promote fast Li+ ion uptake and release by an applied current. Moreover, F-cHBC has potential applications as the capacitive anode in Na-ion storage cells. The fast dynamics of its capacitive behavior allow it to deliver a specific capacity of 65 mA h g-1 at a high current of 4000 mA g-1.

11.
Chemistry ; 24(36): 9015-9021, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29882605

RESUMEN

To understand the relationship between kinetically controlled hierarchical superstructures and photophysical properties, pyrene-based asymmetric liquid crystal (LC) dendrons (abbreviated as PD) were newly synthesized by covalently attaching a pyrene moiety (P) at a biphenyl-based LC dendritic group (D). The phase transition behavior of PD has been systematically studied with a combined technique of thermal analysis, microscopy, spectroscopy, and scattering analysis. PD formed two different crystalline structures depending on the cooling rate: a stable crystalline phase (Ks , slow cooling) and a metastable crystalline phase (Kms , quenching). The kinetically controlled molecular packing structures of PD depend on the competition and cooperation of intermolecular physical interactions with nanophase separation. Upon slow cooling, the PD dimer formed by intermoelcular H-bonding constructed a layered hierarchical structure with the help of nanophase separation. Owing to the strong π-π stacking (J-aggregation) with weak H-bondings, the PD dimer in the layer was slightly tilted to give a monoclinic layered structure with a periodic layer d-spacing of 6.6 nm. In contrast, the metastable Kms phase formed by the quenching process showed a significant tilt of the PD dimer in the layer (d-spacing=4.4 nm) due to the weak π-π stacking (H-aggregation) and the strong H-bondings.

12.
ACS Macro Lett ; 7(10): 1180-1185, 2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-35651269

RESUMEN

A powerful strategy to enhance the thermal conductivity of liquid crystalline epoxy resin (LCER) by simply replacing the conventional amine cross-linker with a cationic initiator was developed. The cationic initiator linearly wove the epoxy groups tethered on the microscopically aligned liquid crystal mesogens, resulting in freezing of the ordered LC microstructures even after curing. Owing to the reduced phonon scattering during heat transport through the ordered LC structure, a dramatic improvement in the thermal conductivity of neat cation-cured LCER was achieved to give a value ∼141% (i.e., 0.48 W/mK) higher than that of the amorphous amine-cured LCER. In addition, at the same composite volume fraction in the presence of a 2-D boron nitride filler, an approximately 130% higher thermal conductivity (maximum ∼23 W/mK at 60 vol %) was observed. The nanoarchitecture effect of the ordered LCER on the thermal conductivity was then examined by a systematic investigation using differential scanning calorimetry, polarized optical microscopy, X-ray diffraction, and thermal conductivity measurements. The linear polymerization of LCER can therefore be considered a practical strategy to enable the cost-efficient mass production of heat-dissipating materials, due to its high efficiency and simple process without the requirement for complex equipment.

13.
Adv Mater ; 29(5)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27905154

RESUMEN

The epitaxially grown alkane layers on graphene are prepared by a simple drop-casting method and greatly reduce the environmentally driven doping and charge impurities in graphene. Multiscale simulation studies show that this enhancement of charge homogeneity in graphene originates from the lifting of graphene from the SiO2 surface toward the well-ordered and rigid alkane self-assembled layers.

15.
Adv Mater ; 28(8): 1657-62, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26679004

RESUMEN

Optical transition between singlet and triplet is observed in phosphorescent platinum octaethylporphyrin (PtOEP), on a graphene substrate. PtOEP on single layer of graphene not only modulates the dominant emission wavelength but also enhances the emission intensity. This result addresses new light-matter interactions of the hybrid structure of graphene and a single molecule.

16.
Chem Sci ; 7(4): 2701-2705, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28660043

RESUMEN

Single-molecule conductance measurements have focused primarily on organic molecular systems. Here, we carry out scanning tunneling microscope-based break-junction measurements on a series of metal chalcogenide Co6Se8 clusters capped with conducting ligands of varying lengths. We compare these measurements with those of individual free ligands and find that the conductance of these clusters and the free ligands have different decay constants with increasing ligand length. We also show, through measurements in two different solvents, 1-bromonaphthalene and 1,2,4-trichlorobenzene, that the conductance decay of the clusters depends on the solvent environment. We discuss several mechanisms to explain our observations.

17.
Health Care Women Int ; 37(11): 1203-1220, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26495754

RESUMEN

We examined the cultural influence on perceived body weight and the level of health practices at a national and individual level. At a national level, we found that Japanese women (n = 80) overestimate body weight more than Korean (n = 82) and American (n = 63) women. At an individual level, individuals with interdependent self-construal were more prone to overestimate weight than those with independent self-construal (N = 182; American women). Based on the data, we identify that the relationship is mediated by self-criticism, and, importantly, it is self-criticism rather than perceived overweight that predicts the level of health activities. Health practitioners and campaign designers across cultures are recommended to concentrate on promoting positive body esteem instead of encouraging engagement in corrective health behaviors for weight loss.


Asunto(s)
Imagen Corporal/psicología , Comparación Transcultural , Conductas Relacionadas con la Salud , Autoimagen , Percepción del Peso , Pueblo Asiatico , Peso Corporal/etnología , Femenino , Humanos , Japón , República de Corea , Autoevaluación (Psicología) , Encuestas y Cuestionarios , Estados Unidos
18.
J Ethn Subst Abuse ; 14(3): 308-22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26161809

RESUMEN

This study examines contributing factors of alcohol misuse among college students in South Korea and the U.S. Exploratory factor analyses (EFA) on measurements of alcohol expectancy, alcohol efficacy, and accommodation resulted in social and personal causes for alcohol misuse. Social causes alone predicted alcohol misuse for both countries. Social factors constituted a much stronger predictor of alcohol misuse among South Korean students than among American students. Practical implications for effective deterrence of student binge drinking are discussed.


Asunto(s)
Consumo de Alcohol en la Universidad/etnología , Alcoholismo/etnología , Conocimientos, Actitudes y Práctica en Salud/etnología , Adolescente , Adulto , Comparación Transcultural , Femenino , Humanos , Masculino , República de Corea , Autoeficacia , Conducta Social , Estados Unidos , Adulto Joven
19.
Chemistry ; 21(15): 5954-61, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25737050

RESUMEN

The two-dimensional assembly of multicarboxylated arenes is explored at the liquid-graphite interface using scanning tunneling microscopy. Symmetry variations were introduced via phenylene spacer addition and the influence of these perturbations on the formation of hydrogen-bonded motifs from an alkanoic acid solvent is observed. This work demonstrates the importance of symmetry in 2D crystal formation and draws possible links of this behavior to prediction of coordination modes in three-dimensional coordination polymers.

20.
J Am Chem Soc ; 135(6): 2207-12, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23363295

RESUMEN

This work explores the formation of well-defined molecular p-n junctions in solution-processed self-assembled heterojunction solar cells using dodecyloxy-substituted contorted hexabenzocoronene (12-c-HBC) as a donor material and phenyl-C(70)-butyric acid methyl ester (PC(70)BM) as an acceptor. We find that the contorted 12-c-HBC molecules effectively assemble in solution to form a nested structure with the ball-shaped PC(70)BM. The result is a self-assembled molecular-scale p-n junction. When this well-defined p-n junction is embedded in active films, we can make efficient self-assembled solar cells with minimal amounts of donor material relative to the acceptor. The power conversion efficiency is drastically enhanced by the mode of donor and acceptor assembly within the film.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA